The transcriptional adaptor protein Gcn5 has been identified as a nuclear histone acetyltransferase (HAT). Although recombinant yeast Gcn5 efficiently acetylates free histones, it fails to acetylate histones contained in nucleosomes, indicating that additional components are required for acetylation of chromosomal histones. We report here that Gcn5 functions as a catalytic subunit in two high-molecular-mass native HAT complexes, with apparent molecular masses of 0.8 and 1.8 megadalton (MD), respectively, which acetylate nucleosomal histones. Both the 0.8-and 1.8-MD Gcn5-containing complexes cofractionate with Ada2 and are lost in gcn5A, ada2A, or ada3A yeast strains, illustrating that these HAT complexes are bona fide native Ada-transcriptional adaptor complexes. Importantly, the 1.8-MD adaptor/HAT complex also contains Spt gene products that are linked to TATA-binding protein (TBP) function. This complex is lost in spt20/ada5A and spt7A strains and Spt3, Spt7, Spt20/Ada5, Ada2, and Gcn5 all copurify with this nucleosomal HAT complex. Therefore, the 1.8-MD adaptor/HAT complex illustrates an interaction between Ada and Spt gene products and confirms the existence of a complex containing the TBP group of Spt proteins as demonstrated by genetic and biochemical studies. We have named this novel transcription regulatory complex SAGA (_Spt-Ada-Gcn5-Acetyltransferase). The function of Gcn5 as a histone acetyltransferase within the Ada and SAGA adaptor complexes indicates the importance of histone acetylation during steps in transcription activation mediated by interactions with transcription activators and general transcription factors (i.e., TBP).[Key Words." Acetyltransferase; nucleosome; transcription; Spt; Ada; Gcn5] Received March 28, 1997; revised version accepted May 15, 1997.Chromatin structure has an intricate role in the regulation of eukaryotic gene transcription. Nucleosomes suppress basal transcription initiation in vivo and in vitro increasing the dependence of transcription on the function of sequence-specific activator proteins (for review, see Grunstein 1990; Owen-Hughes and Workman 1994). Chromatin structures are remodeled before or during transcription activation generating DNase I hypersensitive regions (DHSs) at transcription control elements (Hager et al. 1995;Steger and Workman 1996;Svaren and Horz 1996). Multiprotein complexes have been impliSCorresponding authors.
Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.
SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5⌬ spt3⌬ and gcn5⌬ spt8⌬) causing loss of a member of each of the moderate classes have severe phenotypes, similar to spt7⌬, spt20⌬, or ada1⌬ mutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.
Multiple covalent modifications exist in the amino-terminal tails of core histones, but whether a relationship exists between them is unknown. We examined the relationship between serine 10 phosphorylation and lysine 14 acetylation in histone H3 and have found that, in vitro, several HAT enzymes displayed increased activity on H3 peptides bearing phospho-Ser-10. This augmenting effect of Ser-10 phosphorylation on acetylation by yGcn5 was lost by substitution of alanine for arginine 164 [Gcn5(R164A)], a residue close to Ser-10 in the structure of the ternary tGcn5/CoA/histone H3 complex. Gcn5(R164A) had reduced activity in vivo at a subset of Gcn5-dependent promoters, and, strikingly, transcription of this same subset of genes was also impaired by substitution of serine 10 to alanine in the histone H3 tail. These observations suggest that transcriptional regulation occurs by multiple mechanistically linked covalent modifications of histones.
Modification of histones is an important element in the regulation of gene expression. Previous work suggested a link between acetylation and phosphorylation, but questioned its mechanistic basis. We have purified a histone H3 serine-10 kinase complex from Saccharomyces cerevisiae and have identified its catalytic subunit as Snf1. The Snf1/AMPK family of kinases function in conserved signal transduction pathways. Our results show that Snf1 and the acetyltransferase Gcn5 function in an obligate sequence to enhance INO1 transcription by modifying histone H3 serine-10 and lysine-14. Thus, phosphorylation and acetylation are targeted to the same histone by promoter-specific regulation by a kinase/acetyltransferase pair, supporting models of gene regulation wherein transcription is controlled by coordinated patterns of histone modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.