Inflammation and the resulting accumulation of reactive oxygen species (ROS) play an important role in the intrinsic and photoaging of human skin in vivo. Environmental insults such as ultraviolet (UV) rays from sun, cigarette smoke exposure and pollutants, and the natural process of aging contribute to the generation of free radicals and ROS that stimulate the inflammatory process in the skin. UV irradiation initiates and activates a complex cascade of biochemical reactions in human skin. In short, UV causes depletion of cellular antioxidants and antioxidant enzymes (SOD, catalase), initiates DNA damage leading to the formation of thymidine dimmers, activates the neuroendocrine system leading to immunosuppression and release of neuroendocrine mediators, and causes increased synthesis and release of pro-inflammatory mediators from a variety of skin cells. The pro-inflammatory mediators increase the permeability of capillaries leading to infiltration and activation of neutrophils and other phagocytic cells into the skin. The net result of all these effects is inflammation and free radical generation (both reactive oxygen and nitrogen species). Furthermore, elastsases and other proteases (cathepsin G) released from neutrophils cause further inflammation, and activation of matrix metalloproteases. The inflammation further activates the transcription of various matrixes degrading metalloproteases, leading to abnormal matrix degradation and accumulation of non-functional matrix components. In addition, the inflammation and ROS cause oxidative damage to cellular proteins, lipids and carbohydrates, which accumulates in the dermal and epidermal compartments, contributing to the aetiology of photoaging. Strategies to prevent photodamage caused by this cascade of reactions initiated by UV include: prevention of UV penetration into skin by physical and chemical sunscreens, prevention/reduction of inflammation using anti-inflammatory compounds (e.g. cyclooxygenase inhibitors, inhibitors of cytokine generation); scavenging and quenching of ROS by antioxidants; inhibition of neutrophil elastase activity to prevent extracellular matrix damage and activation of matrix metalloproteases (MMPs), and inhibition of MMP expression (e.g. by retinoids) and activity (e.g. by natural and synthetic inhibitors).
Formyl-met-leu-phe (fMLP) induces actin assembly in neutrophils; the resultant increase in F-actin content correlates with an increase in the rate of cellular locomotion at fMLP concentrations _<10 -~ M (Howard, T. H., and W. H. Meyer, 1984, J. Cell Biol., 98:1265-1271. We studied the time course of change in F-actin content, F-actin distribution, and cell shape after fMLP stimulation. F-actin content was quantified by fluorescence activated cell sorter analysis of nitrobenzoxadiazole-phallacidin-stained cells (Howard, T. H., 1982, J. Cell Biol., 95(2, Pt. 2:327a). F-actin distribution and cell shape were determined by analysis of fluorescence photomicrographs of nitrobenzoxadiazole-phallacidin-stained cells. After fMLP stimulation at 25°C, there is a rapid actin polymerization that is maximal (up to 2.0 times the control level) at 45 s; subsequently, the F-actin depolymerizes to an intermediate F-actin content 5-10 rain after stimulation. The depolymerization of F-actin reflects a true decrease in F-actin content since the quantity of probe extractable from cells also decreases between 45 s and 10 min. The rate of actin polymerization (3.8 + 0.3-4.4 + 0.6% increase in F-actin/s) is the same for 10-t°-10 -6 M fMLP and the polymerization is inhibited by cytochalasin D. The initial rate of F-actin depolymerization (6.0 + 1.0-30 + 5% decrease in F-actin/min) is inversely proportional to fMLP dose. The F-actin content of stimulated cells at 45 s and 10 min is greater than control levels and varies directly with fMLP dose. F-actin distribution and cell shape also vary as a function of time after stimulation. 45 s after stimulation the cells are rounded and Factin is diffusely distributed; 10 min after stimulation the cell is polarized and F-actin is focally distributed. These results indicate that (a) actin polymerization and depolymerization follow fMLP stimulation in sequence, (b) the rate of depolymerization and the maximum and steady state F-actin content but not the rate of polymerization are fMLP dose dependent, and (c) concurrent with F-actin depolymerization, F-actin is redistributed and the cell changes shape.
This study confirms the protective role of a unique mixture of antioxidants containing vitamin C, ferulic acid, and phloretin on human skin from the harmful effects of UV irradiation. Phloretin, in addition to being a potent antioxidant, may stabilize and increase the skin availability of topically applied vitamin C and ferulic acid. We propose that antioxidant mixture will complement and synergize with sunscreens in providing photoprotection for human skin.
The studies presented here characterize a simple, quantitative NBDphallacidin extraction assay for determining the F-actin content of fMLP-activated neutrophils. The NBDphallacidin extraction assay is based upon the specificity of NBDphallacidin binding to F-actin and the solubility of NBDphallacidin in methanol. Cells are fixed, permeabilized, and stained with NBDphallacidin; the cells are then pelleted, the bound NBDphallacidin is extracted into methanol, and the RFI (excite 465; emit 535) of the solution is determined. Binding of NBDphallacidin to neutrophils is saturable and 90% of bound NBDphallacidin is displaced by nonfluorescent phalloidin. The extraction of bound NBDphallacidin into methanol is complete and the excitation/emission characteristics of NBDphallacidin are not altered by extraction. The assay is relatively inexpensive, applicable to the study of cells in suspension or on substratum, allows kinetic studies with 5-10s time resolution, and is not affected by the shape of the cell or the distribution of the probe. We used the NBDphallacidin extraction assay to study the kinetics of fMLP-induced change in the F-actin content of neutrophils and the effect of tBOC peptide, an inhibitor of fMLP binding, on these changes. The extraction assay reveals a rapid, sequential fMLP-induced increase followed by a decrease in F-actin content. The tBOC peptide inhibits fMLP-induced actin polymerization. Addition of tBOC during fMLP-induced polymerization or at times when F-actin content is maximal enhances F-actin depolymerization. The rate of F-actin depolymerization is greater than or equal to fourfold faster in the presence than in the absence of tBOC. The results show that The NBDphallacidin extraction assay is useful for studying the kinetics of change in F-actin content of nonmuscle cells; fMLP receptor occupancy is required for fMLP-dependent polymerization but not depolymerization; and both the actin polymerizing and depolymerizing processes are active in the cell within 5 s after fMLP stimulation. Implications of these observations for understanding the observed increase and, then, decrease in F-actin content of fMLP-activated cells are discussed.
Antioxidants are molecules capable of inhibiting the oxidation of other molecules. Although oxidation reactions are essential for life, they can also be damaging. All living organisms maintain complex systems of multiple types of antioxidants to protect their cells from oxidative damage. Antioxidants can also act as pro-oxidants, under certain circumstances. The efficacy and benefit of an antioxidant is, therefore, very much dependent on the delivery of the antioxidant to the organism. Topically applied antioxidants constitute an important group of pharmacologically active agents capable of preventing the occurrence and reducing the severity of UV-induced skin damage and skin aging. Antioxidants protect skin cells against the damaging effects of reactive oxygen species (ROS), such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals, and peroxynitrite. ROS induced oxidative stress in the skin has been linked to cancer, aging, inflammation, and photodamage. This review focuses on antioxidants used in the cosmetic industry for protection of skin, formulation methods used to enhance their efficacy, and methods used to test the efficacy of antioxidants in topical formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.