The Toll/Dorsal pathway regulates dorsoventral axis formation in the Drosophila embryo. We had previously obtained evidence that a homologous pathway exists in Xenopus, however, its role during normal frog development had not been established. Here we report the cloning of Xenopus MyD88 (XMyD88), whose mammalian homologs are adaptor proteins linking Toll/IL-1 receptors and IRAK kinases. We show that in the frog embryo overexpression of a dominant-negative form of XMyD88 blocked Toll receptor activity, specifically inhibited axis formation and reduced expression of pivotal organizer genes. The observed stage-dependency of interference suggests a function for maternal XMyD88 soon after fertilization. We conclude that XMyD88 activity is required for normal Spemann organizer formation, implying an essential role for maternal Toll/IL-1 receptors in Xenopus axis formation.
The Spätzle/Toll signaling pathway controls ventral axis formation in Drosophila by generating a gradient of nuclear Dorsal protein. Dorsal controls the downstream regulators dpp and sog, whose patterning functions are conserved between insects and vertebrates. Although there is no experimental evidence that the upstream events are conserved as well, we set out to ask if a vertebrate embryo can respond to maternal components of the fly Dorsal pathway. Here we demonstrate a dorsalizing activity for the heterologous Easter, Spätzle and Toll proteins in UV-ventralized Xenopus embryos, which is inhibited by a co-injected dominant Cactus variant. We conclude that the Dorsal signaling pathway is a component of the conserved dorsoventral (d/v) patterning system in bilateria.
Maternal Wnt/β-Catenin signaling establishes a program of dorsal-specific gene expression required for axial patterning in Xenopus. We previously reported that a subset of dorsally expressed genes depends not only on Wnt/β-Catenin stimulation, but also on a MyD88-dependent Toll-like receptor/IL1-receptor (TLR/IL1-R) signaling pathway. Here we show that these two signal transduction cascades converge in the nucleus to coactivate gene transcription in blastulae through a direct interaction between β-Catenin and NF-κB proteins. A transdominant inhibitor of NF-κB, ΔNIκBα, phenocopies loss of MyD88 protein function, implicating Rel/NF-κB proteins as selective activators of dorsal-specific gene expression. Sensitive axis formation assays in the embryo demonstrate that dorsalization by Wnt/β-Catenin requires NF-κB protein activity, and vice versa. Xenopus nodal-related 3 (Xnr3) is one of the genes with dual β-Catenin/NF-κB input, and a proximal NF-κB consensus site contributes to the regional activity of its promoter. We demonstrate in vitro binding of Xenopus β-Catenin to several XRel proteins. This interaction is observed in vivo upon Wnt-stimulation. Finally, we show that a synthetic luciferase reporter gene responds to both endogenous and exogenous β-Catenin levels in an NF-κB motif dependent manner. These results suggest that β-Catenin acts as a transcriptional co-activator of NF-κB-dependent transcription in frog primary embryonic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.