Di-(2-propylheptyl) phthalate (DPHP) is used as a plasticizer for polyvinyl chloride products. A tolerable daily intake of DPHP of 0.2 mg/kg body weight has been derived from rat data. Because toxicokinetic data of DPHP in humans were not available, it was the aim of the present work to monitor DPHP and selected metabolites in blood and urine of 6 male volunteers over time following ingestion of a single DPHP dose (0.7 mg/kg body weight). Concentration-time courses in blood were obtained up to 24 h for DPHP, mono-(2-propylheptyl) phthalate (MPHP), mono-(2-propyl-6-hydroxyheptyl) phthalate (OH-MPHP), and mono-(2-propyl-6-oxoheptyl) phthalate (oxo-MPHP); amounts excreted in urine were determined up to 46 h for MPHP, OH-MPHP, oxo-MPHP, and mono-(2-propyl-6-carboxyhexyl) phthalate (cx-MPHP). All curves were characterized by an invasion and an elimination phase the kinetic parameters of which were determined together with the areas under the concentration-time curves in blood (AUCs). AUCs were: DPHP > MPHP > oxo-MPHP > OH-MPHP. The amounts excreted in urine were: oxo-MPHP > OH-MPHP> > cx-MPHP > MPHP. The AUCs of MPHP, oxo-MPHP, or OH-MPHP could be estimated well from the cumulative amounts of urinary OH-MPHP or oxo-MPHP excreted within 22 h after DPHP intake. Not considering possible differences in species-sensitivity towards unconjugated DPHP metabolites, it was concluded from a comparison of their AUCs in DPHP-exposed humans with corresponding earlier data in rats that there is no increased risk of adverse effects associated with the internal exposure of unconjugated DPHP metabolites in humans as compared to rats when receiving the same dose of DPHP per kg body weight.
Propylene (PE) was not carcinogenic in long-term studies in rodents. However, its biotransformation to propylene oxide (PO) raises questions about a carcinogenic risk. PO alkylates macromolecules, is a direct mutagen, and caused tumors in rodents at high concentrations. In order to acquire knowledge on the species-specific PO concentrations in blood resulting from PE exposure, we exposed male Fischer 344/N rats in closed exposure chambers to constant PE concentrations, between 20.1 and 3000 ppm (7 h at least), and four male volunteers to mean constant PE concentrations of 9.82 and 23.4 ppm (180 min) in inhaled air. In the animal experiments, PE and PO were measured in the chamber atmosphere, PE by gas chromatography with flame ionization detection (GC/FID), PO by GC/FID or GC with mass-selective detection (GC/MSD). In the human studies, PE was measured in inhaled and exhaled air by GC/FID. PO was quantified by GC/MSD from exhaled breath collected in gasbags. Blood concentrations of PO were calculated based on the measured PO concentrations in air using the blood-to-air partition coefficients of 60 (rat) and 66 (human). In rats, PO blood concentrations ranged from 53 nmol/l at 20.1 ppm PE to 1750 nmol/l at 3000 ppm PE. In humans, mean blood concentrations of PO were 0.44 and 0.92 nmol/l at mean PE concentrations of 9.82 and 23.4 ppm, respectively. These findings should be taken into consideration when estimating the carcinogenic risk of PE to humans based on carcinogenicity studies in PE- or PO-exposed rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.