The frequency response of the h.f. quadrupole probe is calculated to be used as a diagnostic tool for measurements of electron density and temperature. In §2 the magnetic field is assumed to be zero, and ion motions are neglected. For a Maxwellian plasma, the so-called ‘Landau wave approximation’ is compared with various more sophisticated treatments, such as numerical integration or super-Cauchy and multiple water-bag models. The range of validity of this approximation is shown to be large, and the results can be applied to the most interesting parts of the experimental observations. All results previously established are recovered with greater speed. Having studied various disturbances (collisions, inhomogeneity and relative motion of the probe with respect to the plasma), it is deduced that the best way to determine the electron temperature is to use the anti-resonances due to beating between the Landau wave and the cold plasma field. In § 3 we describe the quadrupole probe, launched in December 1971 as part of the CISASPE rocket experiment. To deduce the electron density and temperature from these measurements, it is necessary to consider the influence of a static magnetic field, such as the earth's magnetic field. The general case could be treated by numerical integration, though with great difficulty, but it is shown that in most ionospheric conditions, in the vicinity of the upper hybrid frequency ωT the above treatment is again possible, the plasma frequency simply being replaced by ωT, and the thermal velocity slightly modified. These assumptions are used to deduce the electron density and temperature profiles.
The optimization of an InAs0.91Sb0.09 based infrared detector has been performed. The importance of the interfaces between the active region and the contacts in generation recombination phenomena is demonstrated. The two sides of the active region are optimized independently through heterostructure band gap engineering. The use of an Al0.15In0.85As0.91Sb0.09 quaternary makes it possible reach a detectivity of 4.4×109cm√Hz∕W at 290 K and 1.4×1010cm√Hz∕W at 250 K at 3.39μm, offering the perspective of a noncryogenic infrared imaging in the 3–5μm band with quantum detectors.
Generation-recombination processes in a narrow band gap active region of infrared photodiodes are studied theoretically and experimentally. Thanks to an analysis of the transport in InAsSb photodiodes as a function of temperature, we demonstrate that these processes can be reduced by controlling the doping of the active region. The first Auger-dominated detector in this spectral range is shown, with negligible diffusion and SRH generation-recombination processes. This leads to the highest detectivity ever reported for a high-temperature antimonide-based detector in this spectral range: D * = 2.5 × 10 10 cm Hz 1/2 W −1 at 250 K and 1.3 × 10 11 cm Hz 1/2 W −1 at 180 K and λ = 3.39 µm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.