In this paper we introduce a method that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books. The method uses a combination of cross fold training and confidence based voting. After allocating the available ground truth in different subsets several training processes are performed, each resulting in a specific OCR model. The OCR text generated by these models then gets voted to determine the final output by taking the recognized characters, their alternatives, and the confidence values assigned to each character into consideration. Experiments on seven early printed books show that the proposed method outperforms the standard approach considerably by reducing the amount of errors by up to 50% and more.
This paper provides the first thorough documentation of a high quality digitization process applied to an early printed book from the incunabulum period (1450-1500). The entire OCR related workflow including preprocessing, layout analysis and text recognition is illustrated in detail using the example of 'Der Heiligen Leben', printed in Nuremberg in 1488. For each step the required time expenditure was recorded. The character recognition yielded excellent results both on character (97.57%) and word (92.19%) level. Furthermore, a comparison of a highly automated (LAREX) and a manual (Aletheia) method for layout analysis was performed. By considerably automating the segmentation the required human effort was reduced significantly from over 100 hours to less than six hours, resulting in only a slight drop in OCR accuracy. Realistic estimates for the human effort necessary for full text extraction from incunabula can be derived from this study. The printed pages of the complete work together with the OCR result is available online 1 ready to be inspected and downloaded.
A method is presented that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books when only small amounts of diplomatic transcriptions are available. This is achieved by building from already existing models during training instead of starting from scratch. To overcome the discrepancies between the set of characters of the pretrained model and the additional ground truth the OCRopus code is adapted to allow for alphabet expansion or reduction. The character set is now capable of flexibly adding and deleting characters from the pretrained alphabet when an existing model is loaded. For our experiments we use a self-trained mixed model on early Latin prints and the two standard OCRopus models on modern English and German Fraktur texts. The evaluation on seven early printed books showed that training from the Latin mixed model reduces the average amount of errors by 43% and 26%, compared to training from scratch with 60 and 150 lines of ground truth, respectively. Furthermore, it is shown that even building from mixed models trained on standard data unrelated to the newly added training and test data can lead to significantly improved recognition results.
Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout recognition and segmentation, character recognition and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. A comfortable GUI allows error corrections not only in the final output, but already in early stages to minimize error propagations. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary. Experiments showed that users with minimal or no experience were able to capture the text of even the earliest printed books with manageable effort and great quality, achieving excellent character error rates (CERs) below 0.5%. The fully automated application on 19th century novels showed that OCR4all can considerably outperform the commercial state-of-the-art tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available. The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools for its main components by standardized interfaces like PageXML, thus aiming at continual higher automation for historical printings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.