In this paper we introduce a method that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books. The method uses a combination of cross fold training and confidence based voting. After allocating the available ground truth in different subsets several training processes are performed, each resulting in a specific OCR model. The OCR text generated by these models then gets voted to determine the final output by taking the recognized characters, their alternatives, and the confidence values assigned to each character into consideration. Experiments on seven early printed books show that the proposed method outperforms the standard approach considerably by reducing the amount of errors by up to 50% and more.
No abstract
A method is presented that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books when only small amounts of diplomatic transcriptions are available. This is achieved by building from already existing models during training instead of starting from scratch. To overcome the discrepancies between the set of characters of the pretrained model and the additional ground truth the OCRopus code is adapted to allow for alphabet expansion or reduction. The character set is now capable of flexibly adding and deleting characters from the pretrained alphabet when an existing model is loaded. For our experiments we use a self-trained mixed model on early Latin prints and the two standard OCRopus models on modern English and German Fraktur texts. The evaluation on seven early printed books showed that training from the Latin mixed model reduces the average amount of errors by 43% and 26%, compared to training from scratch with 60 and 150 lines of ground truth, respectively. Furthermore, it is shown that even building from mixed models trained on standard data unrelated to the newly added training and test data can lead to significantly improved recognition results.
In the absence of ground truth it is not possible to automatically determine the exact spectrum and occurrences of OCR errors in an OCR'ed text. Yet, for interactive postcorrection of OCR'ed historical printings it is extremely useful to have a statistical profile available that provides an estimate of error classes with associated frequencies, and that points to conjectured errors and suspicious tokens. The method introduced in [3] computes such a profile, combining lexica, pattern sets and advanced matching techniques in a specialized Expectation Maximization (EM) procedure. Here we improve this method in three respects: First, the method in [3] is not adaptive: user feedback obtained by actual postcorrection steps cannot be used to compute refined profiles. We introduce a variant of the method that is open for adaptivity, taking correction steps of the user into account. This leads to higher precision with respect to recognition of erroneous OCR tokens. Second, during postcorrection often new historical patterns are found. We show that adding new historical patterns to the linguistic background resources leads to a second kind of improvement, enabling even higher precision by telling historical spellings apart from OCR errors. Third, the method in [3] does not make any active use of tokens that cannot be interpreted in the underlying channel model. We show that adding these uninterpretable tokens to the set of conjectured errors leads to a significant improvement of the recall for error detection, at the same time improving precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.