The study of the intermolecular interactions is important to explain the phenomenon occurred on the human body. One of the most important processes that can be studied is the interaction of the peptide with metal ions. In this study, a computational approach was harnessed to predict the interaction and the changes in peptide’s conformation between Cys-Ala peptide which is one of the important amino acids in e-cadherin with some of alkaline earth metal ions. Cys-Ala peptide (Ac-CA-NH2) was used as a molecular model in this calculation. All the molecular structure involved in the interaction was optimized by density functional theory DFT/M06-2X, and basis set 6-31G** to obtain minimum energy, the interaction energies, and the changes in its conformation. The results showed that the interaction energy of Ac-CA-NH2 with alkaline earth metal ions from top to bottom based on the Periodic table is getting higher in a row. The interaction energies of Ac-CA-NH2 with Be2+, Mg2+ and Ca2+ ions are -2.393kcal, -17.489 kcal, and -25.938 kcal respectively. These energies were obtained from the interaction of the peptide with ions in a water solvent. The changes in the peptide's bond length and dihedral angle indicate a conformational change in the Cys-Ala peptide, but it still maintains the trans conformation in its peptide bonds. The results and evaluations of this study may be used for further research considerations and may be applied to enzymes or other peptides that have the Cys-Ala residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.