This paper discusses the implementation of modulation chains for multi-standard communications on a dynamically and partially reconfigurable heterogeneous platform. Implementation results highlight the benefit of considering a DSP/FPGA platform instead of a multi-DSP platform since the FPGA supports efficiently intensive computation components, which reduces the DSP load. Furthermore, partial dynamic reconfiguration increases the overall performance as compared to total dynamic reconfiguration since there is 45% of bitstream size reduction, which leads to a 45% decrease of the whole reconfiguration time. The implementation of modulation chains for multi-standard communications proves the availability of new technology to support efficiently Software Defined Radio.
ISSN : 1939-8018 (Print) 1939-8115 (Online)In the field of Software Radio (SWR), parameterization studies have become a very important topic. This is mainly because parameterization will probably decrease the size of the software to be downloaded, and also because it will limit the reconfiguration time. In this paper, parameterization is considered as a digital radio design methodology. Two different techniques, namely common functions and common operators are considered. In this paper, the second view is developed and illustrated by two examples: the well known Fast Fourier Transform (FFT) and the proposed Reconfigurable Linear Feedback Shift Register (R-LFSR), derived from the classical Linear Feedback Shift Register (LFSR) structure
Wireless Network-on-Chip (WiNoC) is one of the most promising solutions to overcome multi-hop latency and high power consumption of modern many/multi core System-on-Chip (SoC). However, the design of efficient wireless links faces challenges to overcome multi-path propagation present in realistic WiNoC channels. In order to alleviate such channel effect, this paper presents a Time-Diversity Scheme (TDS) to enhance the reliability of on-chip wireless links using a semi-realistic channel model. First, we study the significant performance degradation of state-of-the-art wireless transceivers subject to different levels of multi-path propagation. Then we investigate the impact of using some channel correction techniques adopting standard performance metrics. Experimental results show that the proposed Time-Diversity Scheme significantly improves Bit Error Rate (BER) compared to other techniques. Moreover, our TDS allows for wireless communication links to be established in conditions where this would be impossible for standard transceiver architectures. Results on the proposed complete transceiver, designed using a 28-nm FDSOI technology, show a power consumption of 0.63mW at 1.0V and an area of 317 µm 2. Full channel correction is performed in one single clock cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.