Since few states are able to produce all of their own military hardware, a majority of countries’ military systems rely on weapon imports. The structure of the international defense technology exchange network remains an important puzzle to understand, along with the factors that drive its evolution. Drawing on a political economy model of arms supply, we propose a new network-oriented explanation for the worldwide transactions of major conventional weapons in the period after World War II. Using temporal exponential random graph models, our dynamic approach illustrates how network dependencies and the relative weighting of economic versus security considerations vary over time. One of our major results is to demonstrate how security considerations started regaining importance over economic ones after 2001. Additionally, our model exhibits strong out-of-sample predictive performance, with network dependencies contributing to model improvement especially after the Cold War.
With the growth of interest in network data across fields, the Exponential Random Graph Model (ERGM) has emerged as the leading approach to the statistical analysis of network data. ERGM parameter estimation requires the approximation of an intractable normalizing constant. Simulation methods represent the state-of-the-art approach to approximating the normalizing constant, leading to estimation by Monte Carlo maximum likelihood (MCMLE). MCMLE is accurate when a large sample of networks is used to approximate the normalizing constant. However, MCMLE is computationally expensive, and may be prohibitively so if the size of the network is on the order of 1,000 nodes (i.e., one million potential ties) or greater. When the network is large, one option is maximum pseudolikelihood estimation (MPLE). The standard MPLE is simple and fast, but generally underestimates standard errors. We show that a resampling method-the parametric bootstrap-results in accurate coverage probabilities for confidence intervals. We find that bootstrapped MPLE can be run in 1/5th the time of MCMLE. We study the relative performance of MCMLE and MPLE with simulation studies, and illustrate the two different approaches by applying them to a network of bills introduced in the United State Senate.
The significance and influence of U.S. Supreme Court majority opinions derive in large part from opinions’ roles as precedents for future opinions. A growing body of literature seeks to understand what drives the use of opinions as precedents through the study of Supreme Court case citation patterns. We raise two limitations of existing work on Supreme Court citations. First, dyadic citations are typically aggregated to the case level before they are analyzed. Second, citations are treated as if they arise independently. We present a methodology for studying citations between Supreme Court opinions at the dyadic level, as a network, that overcomes these limitations. This methodology—the citation exponential random graph model, for which we provide user-friendly software—enables researchers to account for the effects of case characteristics and complex forms of network dependence in citation formation. We then analyze a network that includes all Supreme Court cases decided between 1950 and 2015. We find evidence for dependence processes, including reciprocity, transitivity, and popularity. The dependence effects are as substantively and statistically significant as the effects of exogenous covariates, indicating that models of Supreme Court citations should incorporate both the effects of case characteristics and the structure of past citations.
The reputation of the maximum pseudolikelihood estimator (MPLE) for Exponential Random Graph Models (ERGM) has undergone a drastic change over the past 30 years. While first receiving broad support, mainly due to its computational feasibility and the lack of alternatives, general opinions started to change with the introduction of approximate maximum likelihood estimator (MLE) methods that became practicable due to increasing computing power and the introduction of MCMC methods. Previous comparison studies appear to yield contradicting results regarding the preference of these two point estimators; however, there is consensus that the prevailing method to obtain an MPLE’s standard error by the inverse Hessian matrix generally underestimates standard errors. We propose replacing the inverse Hessian matrix by an approximation of the Godambe matrix that results in confidence intervals with appropriate coverage rates and that, in addition, enables examining for model degeneracy. Our results also provide empirical evidence for the asymptotic normality of the MPLE under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.