For active substances in plant protection products (PPP) with well defined urinary elimination, no potential for accumulation and virtually no metabolism, measuring of urine levels could be a powerful tool for human biomonitoring. Such data may provide reliable estimates of actual internal human exposure that can be compared to appropriate reference values, such as the 'acceptable daily intake (ADI)' or the 'acceptable operator exposure level (AOEL)'. Traces of the active compound glyphosate were found in human urine samples, probably resulting either from occupational use for plant protection purposes or from dietary intake of residues. A critical review and comparison of data obtained in a total of seven studies from Europe and the US was performed. The conclusion can be drawn that no health concern was revealed because the resulting exposure estimates were by magnitudes lower than the ADI or the AOEL. The expected internal exposure was clearly below the worst-case predictions made in the evaluation of glyphosate as performed for the renewal of its approval within the European Union. However, differences in the extent of exposure with regard to the predominant occupational and dietary exposure routes and between Europe and North America became apparent.
The risk assessment of pesticide residues is based on the estimation of their dietary intake. Models based on a new national consumption survey were developed to estimate the short- and long-term dietary intake of pesticide residues for children from 2 to under 5 years, allowing a realistic risk assessment to be made. The recommended methods are described. At the national level, the new models shall replace the previous methods for evaluating dietary intake.
EFSA established cumulative assessment groups and conducted retrospective cumulative risk assessments for two types of craniofacial alterations (alterations due to abnormal skeletal development, head soft tissue alterations and brain neural tube defects) for 14 European populations of women in childbearing age. Cumulative acute exposure calculations were performed by probabilistic modelling using monitoring data collected by Member States in 2017, 2018 and 2019. A rigorous uncertainty analysis was performed using expert knowledge elicitation. Considering all sources of uncertainty, their dependencies and differences between populations, it was concluded with varying degrees of certainty that the MOET resulting from cumulative exposure is above 100 for the two types of craniofacial alterations. The threshold for regulatory consideration established by risk managers is therefore not exceeded. Considering the severity of the effects under consideration, it was also assessed whether the MOET is above 500. This was the case with varying levels of certainty for the head soft tissue alterations and brain neural tube defects. However, for the alterations due to abnormal skeletal development, it was found about as likely as not that the MOET is above 500 in most populations. For two populations, it was even found more likely that the MOET is below 500. These results were discussed in the light of the conservatism of the methodological approach.
Dietary risks for the German population owing to pesticide residues in foods were assessed based on food monitoring data, consumption surveys for children and adults and compound specific toxicological reference values or general thresholds of toxicological concern. A tiered probabilistic modelling was conducted to screen 700 pesticides for significant long-and short-term dietary exposures. Especially for the short-term dietary exposure, the probabilistic methodology used allows simultaneous consideration of the complete daily consumption, whereas most regulatory bodies still rely on single commodity approaches. After screening, refined exposure assessments were conducted for 19 compounds under consideration of conversion factors for toxicologically relevant metabolites, processing information, experimentally derived variability factors and the edible portion for each food item. In total, for 693 compounds the dietary exposure was unlikely to present a chronic or acute public health concern for the German population. In contrast, the refined assessments indicate that the short-term dietary exposure for chlorpyrifos and the cumulative short-term dietary exposure for dimethoate and omethoate may present a public health concern. For copper, owing to exposure assessment limitations, as well as for dimethylvinphos, halfenprox and tricyclazole, which exceeded the thresholds of toxicological concern, the dietary risk assessment remained inconclusive.
Proposals to update the methodology for the international estimated short-term intake (IESTI) equations were made during an international workshop held in Geneva in 2015. Changes to several parameters of the current four IESTI equations (cases 1, 2a, 2b, and 3) were proposed. In this study, the overall impact of these proposed changes on estimates of short-term exposure was studied using the large portion data available in the European Food Safety Authority PRIMo model and the residue data submitted in the framework of the European Maximum Residue Levels (MRL) review under Article 12 of Regulation (EC) No 396/2005. Evaluation of consumer exposure using the current and proposed equations resulted in substantial differences in the exposure estimates; however, there were no significant changes regarding the number of accepted MRLs. For the different IESTI cases, the median ratio of the new versus the current equation is 1.1 for case 1, 1.4 for case 2a, 0.75 for case 2b, and 1 for case 3. The impact, expressed as a shift in the IESTI distribution profile, indicated that the 95th percentile IESTI shifted from 50% of the acute reference dose (ARfD) with the current equations to 65% of the ARfD with the proposed equations. This IESTI increase resulted in the loss of 1.2% of the MRLs (37 out of 3110) tested within this study. At the same time, the proposed equations would have allowed 0.4% of the MRLs (14 out of 3110) that were rejected with the current equations to be accepted. The commodity groups that were most impacted by these modifications are solanacea (e.g., potato, eggplant), lettuces, pulses (dry), leafy brassica (e.g., kale, Chinese cabbage), and pome fruits. The active substances that were most affected were fluazifop-p-butyl, deltamethrin, and lambda-cyhalothrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.