This paper investigates the utility of the Inclusion Index, the Jaccard Index and the Cosine Index for calculating similarities of documents, as used for mapping science and technology. It is shown that, provided that the same content is searched across various documents, the Inclusion Index generally delivers more exact results, in particular when computing the degree of similarity based on citation data. In addition, various methodologies such as co-word analysis, Subject-Action-Object (SAO) structures, bibliographic coupling, co-citation analysis, and selfcitation links are compared. We find that the two former ones tend to describe rather semantic similarities that differ from knowledge flows as expressed by the citation-based methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.