Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo .
HPV16 causes 3% to 4% of all human cancers. It is proposed that during the viral life cycle, the viral genome is actively segregated into daughter nuclei, ensuring viral replication in the subsequent S phase.
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that are significant risk factors in the development of cancer, and HPV accounts for approximately 5% of all worldwide cancers. Recent studies using data from The Cancer Genome Atlas (TCGA) have demonstrated that elevated levels of estrogen receptor alpha (ERα) are associated with improved survival in oropharyngeal cancers, and these elevated receptor levels were linked with human papillomavirus-positive cancers (HPV+cancers). There has been a dramatic increase in HPV-related head and neck squamous cell carcinomas (HPV+HNSCCs) over the last 2 decades, and therapeutic options for this ongoing health crisis are a priority; currently, there are no antiviral therapeutics available for combatting HPV+cancers. During our TGCA studies on head and neck cancer, we had also discovered the overexpression of ERα in HPV+cancers. Here, we demonstrate that 17β-estradiol (estrogen) attenuates the growth/cell viability of HPV+cancers in vitro, but not HPV-negative cancer cells. In addition, N/Tert-1 cells (foreskin keratinocytes immortalized with human telomerase reverse transcriptase [hTERT]) containing human papillomavirus 16 (HPV16) have elevated levels of ERα and growth sensitivity after estrogen treatment compared with parental N/Tert-1 cells. Finally, we demonstrate that there are potentially two mechanisms contributing to the attenuation of HPV+ cell growth following estrogen treatment. First, estrogen represses the viral transcriptional long control region (LCR) downregulating early gene expression, including E6/E7. Second, expression of E6 and E7 by themselves sensitizes cells to estrogen. Overall, our results support the recent proposal that estrogen could be exploited therapeutically for the treatment of HPV-positive oral cancers. IMPORTANCE Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC.
Human papillomaviruses (HPV) are causative agents in 5% of all cancers, including the majority of anogenital and oropharyngeal cancers. Downregulation of innate immune genes (IIGs) by HPV to promote the viral life cycle is well documented; E6 and E7 are known repressors of these genes. More recently, we demonstrated that E2 could also repress IIGs. These studies have been carried out in cells overexpressing the viral proteins, and to further investigate the role of individual viral proteins in this repression, we introduced stop codons into E6 and/or E7 in the entire HPV16 genome and generated N/Tert-1 cells stably maintaining the HPV16 genomes. We demonstrate that E6 or E7 individually is not sufficient to repress IIG expression in the context of the entire HPV16 genome; both are required for a synergistic repression. The DNA damage response (DDR) is activated by HPV16 irrespective of E6 and E7 expression, presumably due to viral replication; E1 is a known activator of the DDR. In addition, replication stress was apparent in HPV16-positive cells lacking E6 and E7, manifested by attenuated cellular growth and activation of replication stress genes. These studies led us to the following model. Viral replication per se can activate the DDR following infection, and this activation is a known inducer of IIG expression, which may induce cellular senescence. To combat this, E6 and E7 synergistically combine to manipulate the DDR and actively repress innate immune gene expression promoting cellular growth; neither protein by itself is able to do this. IMPORTANCE The role of human papillomavirus 16 (HPV16) in human cancers is well established; however, to date there are no antiviral therapeutics that are available for combatting these cancers. To identify such targets, we must enhance the understanding of the viral life cycle. Innate immune genes (IIGs) are repressed by HPV16, and we have reported that this repression persists through to cancer. Reversal of this repression would boost the immune response to HPV16-positive tumors, an area that is becoming more important given the advances in immunotherapy. This report demonstrates that E6 and E7 synergistically repress IIG expression in the context of the entire HPV16 genome. Removal of either protein activates the expression of IIGs by HPV16. Therefore, gaining a precise understanding of how the viral oncogenes repress IIG expression represents an opportunity to reverse this repression and boost the immune response to HPV16 infections for therapeutic gain.KEYWORDS DNA damage response, E6, E7, innate immunity, papillomavirus H uman papillomavirus (HPV) is the most common sexually transmitted infection in the United States, with an estimated 80% of sexually active adults acquiring an HPV infection in their lifetime (1). Of the high-risk HPVs known to be causative in the development of cancer, HPV16 is the most prevalent genotype (2). HPV16 is causative in around 50% of cervical cancers and nearly 90% of HPV-related head and neck RESULTSEstablishment and characterization of...
HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.