This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
The sudden global emergence of SARS-CoV-2 urgently requires an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several omics studies have extended our knowledge of COVID-19 pathophysiology, including some focused on proteomic aspects 1-3 . To understand how SARS-CoV-2 and related coronaviruses manipulate the host we here characterized interactome, proteome and signaling processes in a systems-wide manner. This identified connections between the corresponding cellular events, revealed functional effects of the individual viral proteins and put these findings into the context of host signaling pathways. We investigated the closely related SARS-CoV-2 and SARS-CoV viruses as well as the influence of SARS-CoV-2 on transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed relationships between the perturbations taking place upon SARS-CoV-2 infection at different layers and identified unique and common molecular mechanisms of SARS coronaviruses. The results highlight the functionality of individual proteins as well as vulnerability hotspots of SARS-CoV-2, which we targeted with clinically approved drugs. We exemplify this by identification of kinase inhibitors as well as MMPase inhibitors with significant antiviral effects against SARS-CoV-2. Main text:To identify interactions of SARS-CoV-2 and SARS-CoV with cellular proteins, we transduced A549 lung carcinoma cells with lentiviruses expressing individual HA-tagged viral proteins (Figure 1a;Extended data Fig. 1a; Supplementary Table 1). Affinity purification followed by mass spectrometry analysis (AP-MS) and statistical modelling of the MS1-level quantitative data allowed identification of 1484 interactions between 1086 cellular proteins and 24 SARS-CoV-2 and 27 SARS-CoV bait proteins (Figure 1b; Extended data Fig. 1b; Supplementary Table 2). The resulting virus-host interaction network revealed a wide range of cellular activities intercepted by SARS-CoV-2 and SARS-CoV (Figure 1b; Extended data Table 1; Supplementary Table 2). In particular, we discovered Extended data Figure 1 | Expression of viral proteins in transduced A549 cells induces changes to the host proteome. (a) Expression of HA-tagged viral proteins, in stably transduced A549 cells, used in AP-MS and proteome expression measurements. (b) The extended version of the virus-host protein-protein interaction network with 24 SARS-CoV-2 and 27 SARS-CoV proteins, as well as ORF3 of HCoV-NL63 and ORF4 and 4a of HCoV-229E, used as baits. Host targets regulated upon viral protein overexpression or SARS-CoV-2 infection (based on the analysis of all data of this study) are highlighted (see the in-plot legend). (c-f) Co-precipitation experiments in HEK 293T cells showing a specific enrichment of (c) endogenous MAVS co-precipitated with c-term HA-tagged ORF7b of SARS-CoV-2 and SARS-CoV (negative controls: SARS-CoV-2 ORF6-HA, ORF7a-HA), (d) ORF7b-H...
Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom—a skeleton from the Great Chesterford cemetery with a calibrated age of 415–545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.
Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypt's past at a genome-wide level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.