The major challenge that faces American Sign Language (ASL) recognition now is developing methods that will scale well with increasing vocabulary size. Unlike in spoken languages, phonemes can occur simultaneously in ASL. The number of possible combinations of phonemes is approximately 1.5 × 10 9 , which cannot be tackled by conventional hidden Markov model-based methods. Gesture recognition, which is less constrained than ASL recognition, suffers from the same problem. In this paper we present a novel framework to ASL recognition that aspires to being a solution to the scalability problems. It is based on breaking down the signs into their phonemes and modeling them with parallel hidden Markov models. These model the simultaneous aspects of ASL independently. Thus, they can be trained independently, and do not require consideration of the different combinations at training time. We show in experiments with a 22-sign-vocabulary how to apply this framework in practice. We also show that parallel hidden Markov models outperform conventional hidden Markov models.
Developing successful sign language recognition, generation, and translation systems requires expertise in a wide range of fields, including computer vision, computer graphics, natural language processing, human-computer interaction, linguistics, and Deaf culture. Despite the need for deep interdisciplinary knowledge, existing research occurs in separate disciplinary silos, and tackles separate portions of the sign language processing pipeline. This leads to three key questions: 1) What does an interdisciplinary view of the current landscape reveal? 2) What are the biggest challenges facing the field? and 3) What are the calls to action for people working in the field? To help answer these questions, we brought together a diverse group of experts for a two-day workshop. This paper presents the results of that interdisciplinary workshop, providing key background that is often overlooked by computer scientists, a review of the state-of-the-art, a set of pressing challenges, and a call to action for the research community.Each group focused on the following questions:
The identification and application of biomarkers in the clinical and medical fields has an enormous impact on society. The increase of digital devices and the rise in popularity of health-related mobile apps has produced a new trove of biomarkers in large, diverse, and complex data. However, the unclear definition of digital biomarkers, population groups, and their intersection with traditional biomarkers hinders their discovery and validation. We have identified current issues in the field of digital biomarkers and put forth suggestions to address them during the DayOne Workshop with participants from academia and industry. We have found similarities and differences between traditional and digital biomarkers in order to synchronize semantics, define unique features, review current regulatory procedures, and describe novel applications that enable precision medicine.
The major challenge that faces American Sign Language (ASL) recognition now is to develop methods that will scale well with increasing vocabulary size. Unlike in spoken languages, phonemes can occur simultaneously in ASL. The number of possible combinations of phonemes after enforcing linguistic constraints is approximately 5:5 10 8 : Gesture recognition, which is less constrained than ASL recognition, suffers from the same problem.Thus, it is not feasible to train conventional hidden Markov models (HMMs) for large-scale ASL applications. Factorial HMMs and coupled HMMs are two extensions to HMMs that explicitly attempt to model several processes occuring in parallel. Unfortunately, they still require consideration of the combinations at training time.In this paper we present a novel approach to ASL recognition that aspires to being a solution to the scalability problems. It is based on parallel HMMs (PaHMMs), which model the parallel processes independently. Thus, they can also be trained independently, and do not require consideration of the different combinations at training time.We develop the recognition algorithm for PaHMMs and show that it runs in time polynomial in the number of states, and in time linear in the number of parallel processes. We run several experiments with a 22 sign vocabulary and demonstrate that PaHMMs can improve the robustness of HMM-based recognition even on a small scale. Thus, Pa-HMMs are a very promising general recognition scheme with applications in both gesture and ASL recognition.
We present a framework for recognizing isolated and continuous American Sign Language (ASL) sentences from three-dimensional data. The data are obtained by using physics-based three-dimensional tracking methods and then presented as input to Hidden Markov Models (HMMs) for recognition. To improve recognition performance, we model context-dependent HMMs and present a novel method of coupling three-dimensional computer vision methods and HMMs by temporally segmenting the data stream with vision methods. We then use the geometric properties of the segments to constrain the HMM framework for recognition. We show in experiments with a 53 sign vocabulary that three-dimensional features outperform two-dimensional features in recognition performance. Furthermore, we demonstrate that context-dependent modeling and the coupling of vision methods and HMMs improve the accuracy of continuous ASL recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.