Adenylate cyclase toxin domain (CyaA‐ACD) is a calmodulin (CaM)‐dependent adenylate cyclase involved in Bordetella pertussis pathogenesis. Calcium (Ca2+) and magnesium (Mg2+) concentrations impact CaM‐dependent CyaA‐ACD activation, but the structural mechanisms remain unclear. In this study, NMR, dynamic light scattering, and native PAGE were used to probe Mg2+‐induced transitions in CaM's conformation in the presence of CyaA‐ACD. Mg2+ binding was localized to sites I and II, while sites III and IV remained Ca2+ loaded when CaM was bound to CyaA‐ACD. 2Mg2+/2Ca2+‐loaded CaM/CyaA‐ACD was elongated, whereas mutation of site I altered global complex conformation. These data suggest that CyaA‐ACD interaction moderates CaM's Ca2+‐ and Mg2+‐binding capabilities, which may contribute to pathobiology.
Site I inactivation of calmodulin (CaM) was used to examine the importance of aspartic acid 22 at position 3 in CaM calcium binding, protein folding, and activation of the Bordetella pertussis adenylate cyclase toxin domain (CyaA-ACD). NMR calcium titration experiments showed that site I in the CaM mutant (D22A) remained largely unperturbed, while sites II, III, and IV exhibited calcium-induced conformational changes similar to wild-type CaM (CaMWt). Circular dichroism analyses revealed that D22A had comparable α-helical content to CaMWt, and only modest differences in α-helical composition were detected between CaMWt-CyaA-ACD and D22A-CyaA-ACD complexes. However, the thermal stability of the D22A-CyaA-ACD complex was reduced, as compared to the CaMWt-CyaA-ACD complex. Moreover, CaM-dependent activity of CyaA-ACD decreased 87% in the presence of D22A. Taken together, our findings provide evidence that D22A engages CyaA-ACD, likely through C-terminal mediated binding, and that site I inactivation exerts functional effects through the modification of stabilizing interactions that occur between N-terminal CaM and CyaA-ACD.
Abstract:Myosin binding protein C (MyBP-C) is a multi-domain protein that participates in the regulation of muscle contraction through dynamic interactions with actin and myosin. Three primary isoforms of MyBP-C exist: cardiac (cMyBP-C), fast skeletal (fsMyBP-C), and slow skeletal (ssMyBP-C). The N-terminal region of cMyBP-C contains the M-motif, a three-helix bundle that binds Ca 2+ -loaded calmodulin (CaM), but less is known about N-terminal ssMyBP-C and fsMyBP-C. Here, we characterized the conformation of a recombinant N-terminal fragment of ssMyBP-C (ssC1C2) using differential scanning fluorimetry, nuclear magnetic resonance, and molecular modeling. Our studies revealed that ssC1C2 has altered thermal stability in the presence and absence of CaM. We observed that site-specific interaction between CaM and the M-motif of ssC1C2 occurs in a Ca 2+ -dependent manner. Molecular modeling supported that the M-motif of ssC1C2 likely adopts a three-helix bundle fold comparable to cMyBP-C. Our study provides evidence that ssMyBP-C has overlapping structural determinants, in common with the cardiac isoform, which are important in controlling protein-protein interactions. We shed light on the differential molecular regulation of contractility that exists between skeletal and cardiac muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.