Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses can provide a context optimal for generating antigen-specific CD8 T cells, as they have natural tropism for dendritic cells, preeminent inducers of CD8 T cell immunity; elicit Th1-promoting inflammation; and lack interference with innate or adaptive immunity. However, notorious genetic instability and underlying neuropathogenicity has hampered poliovirus-based vector applications. Here we devised a strategy based on the polio:rhinovirus chimera PVSRIPO, devoid of viral neuropathogenicity after intracerebral inoculation in human subjects, for stable expression of exogenous antigens. PVSRIPO vectors infect, activate, and induce epitope presentation in DCs in vitro; they recruit and activate DCs with Th1-dominant cytokine profiles at the injection site in vivo. They efficiently prime tumor antigen-specific CD8 T cells in vivo, induce CD8 T cell migration to the tumor site, delay tumor growth and enhance survival in murine tumor models.
Epstein–Barr virus (EBV) is a ubiquitous herpesvirus that typically causes asymptomatic infection but can promote B lymphoid tumors in the immune suppressed. In vitro, EBV infection of primary B cells stimulates glycolysis during immortalization into lymphoblastoid cell lines (LCLs). Lactate export during glycolysis is crucial for continued proliferation of many cancer cells—part of a phenomenon known as the “Warburg effect”— and is mediated by monocarboxylate transporters (MCTs). However, the role of MCTs has yet to be studied in EBV-associated malignancies, which display Warburg-like metabolism in vitro. Here, we show that EBV infection of B lymphocytes directly promotes temporal induction of MCT1 and MCT4 through the viral proteins EBNA2 and LMP1, respectively. Functionally, MCT1 was required for early B cell proliferation, and MCT4 up-regulation promoted acquired resistance to MCT1 antagonism in LCLs. However, dual MCT1/4 inhibition led to LCL growth arrest and lactate buildup. Metabolic profiling in LCLs revealed significantly reduced oxygen consumption rates (OCRs) and NAD+/NADH ratios, contrary to previous observations of increased OCR and unaltered NAD+/NADH ratios in MCT1/4-inhibited cancer cells. Furthermore, U-13C6–glucose labeling of MCT1/4-inhibited LCLs revealed depleted glutathione pools that correlated with elevated reactive oxygen species. Finally, we found that dual MCT1/4 inhibition also sensitized LCLs to killing by the electron transport chain complex I inhibitors phenformin and metformin. These findings were extended to viral lymphomas associated with EBV and the related gammaherpesvirus KSHV, pointing at a therapeutic approach for targeting both viral lymphomas.
Abstract:Myosin binding protein C (MyBP-C) is a multi-domain protein that participates in the regulation of muscle contraction through dynamic interactions with actin and myosin. Three primary isoforms of MyBP-C exist: cardiac (cMyBP-C), fast skeletal (fsMyBP-C), and slow skeletal (ssMyBP-C). The N-terminal region of cMyBP-C contains the M-motif, a three-helix bundle that binds Ca 2+ -loaded calmodulin (CaM), but less is known about N-terminal ssMyBP-C and fsMyBP-C. Here, we characterized the conformation of a recombinant N-terminal fragment of ssMyBP-C (ssC1C2) using differential scanning fluorimetry, nuclear magnetic resonance, and molecular modeling. Our studies revealed that ssC1C2 has altered thermal stability in the presence and absence of CaM. We observed that site-specific interaction between CaM and the M-motif of ssC1C2 occurs in a Ca 2+ -dependent manner. Molecular modeling supported that the M-motif of ssC1C2 likely adopts a three-helix bundle fold comparable to cMyBP-C. Our study provides evidence that ssMyBP-C has overlapping structural determinants, in common with the cardiac isoform, which are important in controlling protein-protein interactions. We shed light on the differential molecular regulation of contractility that exists between skeletal and cardiac muscle.
BACKGROUND H3 K27M-mutant diffuse midline glioma (DMG) is invariably lethal. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses, in particular, are uniquely tropic for dendritic cells (DC) and potently activate DC, inducing Th1-dominant cytokine profiles, CD8 T cell immunity, and enhanced epitope presentation. Thus, poliovirus is ideally suited for vectored delivery of signature tumor neoantigens, e.g. the H3 K27M feature of DMG. However, poliovirus vector design is inherently limited by genetic instability and the underlying neuropathogenicity of poliovirus. METHODS We created a genetically stable, polio:rhinovirus chimera vector devoid of neuropathogenicity and modified for stable expression of the HLA-A2 restricted H3.3 K27M antigen (RIPO (H3.3)). RESULTS RIPO(H3.3) infects, activates, and induces H3.3K27M antigen presentation in DCs in vitro. Given intramuscularly in vivo, RIPO(H3.3) recruits and activates DCs with Th1-dominant cytokine profiles, efficiently primes H3.3K27M-specific CD8 T cells, induces antigen-specific CD8 T cell migration to the tumor site, delays tumor growth, and enhances survival in murine tumor models. CONCLUSION This novel approach leverages the unique ability of polioviruses to activate DCs while simultaneously introducing the H3.3 K27M antigen. In this way, DCs are activated optimally in situ, while being simultaneously infected to express/present tumor antigen. RIPO(H3.3), given by intramuscular injection, will be evaluated in a clinical trial for children with H3 K27M-mutant diffuse midline glioma.
Epstein-Barr Virus (EBV) is a ubiquitous herpesvirus that typically causes asymptomatic infection but can promote B lymphoid tumors in the immune-suppressed.In vitro, EBV infection of primary B cells stimulates glycolysis during immortalization into lymphoblastoid cell lines (LCLs). Lactate export during glycolysis is crucial for continued proliferation of many cancer cells-part of a phenomenon known as the “Warburg effect,” and is mediated by the monocarboxylate transporters 1 and 4 (MCT1 and MCT4). However, the role of MCT1/4 has yet to be studied in EBV-associated malignancies which display Warburg-like metabolismin vitro. Here, we show that EBV infection of B lymphocytes directly promotes temporal induction of MCT1 and MCT4 through the viral proteins EBNA2 and LMP1 respectively, with MCT1 being induced early after infection and MCT4 late. Remarkably, singular MCT1 inhibition early, and dual MCT1/4 inhibition in LCLs using a novel MCT4-selective inhibitor led to growth arrest and lactate buildup. Metabolic profiling in LCLs revealed significatly reduced oxygen consumption rates (OCR) and NAD+/NADH ratios, contrary to prevous observations of increased OCR and unaltered NAD+/NADH ratios in MCT1/MCT4-inhibited cancer cells. Furthermore, U-13C6 glucose labeling of MCT1/4-inhibited LCLs also revealed increased labeling of glutathione in the presence of elevated ROS and depleted glutathione pools, as well as increased labeling ofde novopyrimidine biosynthetic intermediates, suggesting broad effects on LCL metabolism. These vulnerabilities sensitized LCLs as well as EBV+, and the related gammaherpesvirus KSHV+ lymphoma cell lines to killing by metformin and phenformin, pointing at a novel therapeutic approach for viral lymphomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.