This paper describes experimental techniques with head-fixed, operantly conditioned rodents that allow the control of stimulus presentation and tracking of motor output at hitherto unprecedented levels of spatio-temporal precision. Experimental procedures for the surgery and behavioral training are presented. We place particular emphasis on potential pitfalls using these procedures in order to assist investigators who intend to engage in this type of experiment. We argue that head-fixed rodent models, by allowing the combination of methodologies from molecular manipulations, intracellular electrophysiology, and imaging to behavioral measurements, will be instrumental in combining insights into the functional neuronal organization at different levels of observation. Provided viable behavioral methods are implemented, model systems based on rodents will be complementary to current primate models—the latter providing highest comparability with the human brain, while the former offer hugely advanced methodologies on the lower levels of organization, for example, genetic alterations, intracellular electrophysiology, and imaging.
Understanding the neural code underlying perception requires the mapping of physical stimulus parameters to both psychophysical decisions and neuronal responses. Here, we employed a novel psychophysical task in head-fixed rats to measure discriminability of vibrotactile whisker deflections. Rats could discriminate 90 Hz from 60 Hz pulsatile stimuli if stimulus intensity covaried with frequency. To pin down the physical parameters used by the rats to discriminate these vibrations, we manipulated stimulus amplitude to arrive at pairs of nondiscriminable stimuli. We found that vibrations matched in intensity (measured as mean absolute velocity), but differing in frequency, were no longer discriminable. Recordings of trigeminal ganglion neurons revealed that the distribution of neurometric sensitivities based on spike counts, but not interspike intervals, matched the rats' inability to discriminate intensity-matched stimuli. In conclusion, we suggest that stimulus mean absolute velocity, encoded in primary afferent spike counts, plays a prominent role for whisker-mediated perception.
Summary It has been posited that the regulation of burst/tonic firing in the thalamus could function as a mechanism for controlling not only how much, but what kind of information is conveyed to downstream cortical targets. Yet how this gating mechanism is adaptively modulated on fast time scales by ongoing sensory inputs in rich sensory environments remains unknown. Using single unit recordings in the rat vibrissa thalamus (VPm), we found that the degree of bottom-up adaptation modulated thalamic burst/tonic firing as well as the synchronization of bursting across the thalamic population along a continuum for which the extremes facilitate detection or discrimination of sensory inputs. Optogenetic control of baseline membrane potential in thalamus further suggests that this regulation may result from an interplay between adaptive changes in thalamic membrane potential and synaptic drive from inputs to thalamus, setting the stage for an intricate control strategy upon which cortical computation is built.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.