Neocortex, the neuronal structure at the base of the remarkable cognitive skills of mammals, is a layered sheet of neuronal tissue composed of juxtaposed and interconnected columns. A cortical column is considered the basic module of cortical processing present in all cortical areas. It is believed to contain a characteristic microcircuit composed of a few thousand neurons. The high degree of cortical segmentation into vertical columns and horizontal layers is a boon for scientific investigation because it eases the systematic dissection and functional analysis of intrinsic as well as extrinsic connections of the column. In this review we will argue that in order to understand neocortical function one needs to combine a microscopic view, elucidating the workings of the local columnar microcircuits, with a macroscopic view, which keeps track of the linkage of distant cortical modules in different behavioral contexts. We will exemplify this strategy using the model system of vibrissal touch in mice and rats. On the macroscopic level vibrissal touch is an important sense for the subterranean rodents and has been honed by evolution to serve an array of distinct behaviors. Importantly, the vibrissae are moved actively to touch - requiring intricate sensorimotor interactions. Vibrissal touch, therefore, offers ample opportunities to relate different behavioral contexts to specific interactions of distant columns. On the microscopic level, the cortical modules in primary somatosensory cortex process touch inputs at highest magnification and discreteness - each whisker is represented by its own so-called barrel column. The cellular composition, intrinsic connectivity and functional aspects of the barrel column have been studied in great detail. Building on the versatility of genetic tools available in rodents, new, highly selective and flexible cellular and molecular tools to monitor and manipulate neuronal activity have been devised. Researchers have started to combine these with advanced and highly precise behavioral methods, on par with the precision known from monkey preparations. Therefore, the vibrissal touch model system is exquisitely positioned to combine the microscopic with the macroscopic view and promises to be instrumental in our understanding of neocortical function.
Butovas, Sergejus and Cornelius Schwarz. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol 90: 3024 -3039, 2003. First published July 23, 2003 10.1152/jn.00245.2003. Using microstimulation to imprint meaningful activity patterns into intrinsically highly interconnected neuronal substrates is hampered by activation of fibers of passage leading to a spatiotemporal "blur" of activity. The focus of the present study was to characterize the shape of this blur in the neocortex to arrive at an estimate of the resolution with which signals can be transmitted by multielectrode stimulation. The horizontal spread of significant unit activity evoked by near-threshold focal electrical stimulation (charge transfer 0.8 -4.8 nC) and multielectrode recording in the face representation of the primary somatosensory cortex of ketamine anesthetized rats was determined to be about 1,350 m. The evoked activity inside this range consisted in a sequence of fast excitatory response followed by an inhibition lasting Ͼ100 ms. These 2 responses could not be separated by varying the intensity of stimulation while a slow excitatory rebound after the inhibitory response was restricted to higher stimulus intensities (Ͼ2.4 nC). Stimulation frequencies of 20 and 40 Hz evoked repetitive excitatory response standing out against a continuous background of inhibition. At 5-and 10-Hz stimulation, the inhibitory response showed a complex interaction pattern attributed to highly sublinear superposition of individual inhibitory responses. The present data help to elucidate the neuronal underpinnings of behavioral effects of microstimulation. Furthermore, they provide essential information to determine spatiotemporal constraints for purposeful multielectrode stimulation in the neocortex.
The rat whisker system has evolved into in an excellent model system for sensory processing from the periphery to cortical stages. However, to elucidate how sensory processing finally relates to percepts, methods to assess psychophysical performance pertaining to precise stimulus kinematics are needed. Here, we present a head-fixed, behaving rat preparation that allowed us to measure detectability of a single whisker deflection as a function of amplitude and peak velocity. We found that velocity thresholds for detection of smallamplitude stimuli (Ͻ3°) were considerably higher than for detection of large-amplitude stimuli (Ͼ3°). This finding suggests the existence of two psychophysical channels mediating detection of whisker deflection: one channel exhibiting high amplitude and low velocity thresholds (W1), and the other channel exhibiting high velocity and low amplitude thresholds (W2). The correspondence of W1 to slowly adapting (SA) and W2 to rapidly adapting (RA) neuronal classes in the trigeminal ganglion was revealed in acute neurophysiological experiments. Neurometric plots of SA and RA cells were closely aligned to psychophysical performance in the corresponding W1 and W2 parameter ranges. Interestingly, neurometric data of SA cells fit the behavior best if it was based on a short time window integrating action potentials during the initial phasic response, in contrast to integrating across the tonic portion of the response. This suggests that detection performance in both channels is based on the assessment of very few spikes in their corresponding groups of primary afferents.
What is mapped on the surface of the primary motor cortex (M1)? The classic somatotopic map holds true on the level of limb representations. However, on the small scale (at within-limb representations), neither somatotopy nor movement dynamics/kinematics seem to be organizational principles. We investigated the hypothesis that integrated into the body representation of M1 there may be separate representation of different modes of motor control, using different subcortical computations but sharing the same motor periphery. Using awake rats and long intracortical stimulation trains in M1 whisker representation (wM1) revealed that natural-like, rhythmic whisking (normally used for tactile exploration) can be evoked from a posteromedial subregion of wM1. Nonrhythmic whisker retraction, on the other hand, was evoked in an adjacent but more anterolaterally located region within wM1. Evoked whisker retraction was always accompanied by complex movements of the face, suggesting that the respective subregion is able to interact with other representations in specific behavioral contexts. Such associations were absent for evoked rhythmic whisking. The respective subregion rather seemed to activate a downstream central pattern generator, the oscillation frequency of which was dependent on the average evoked cortical activity. Nevertheless, joint stimulation of the two neighboring subregions demonstrated their potency to interact in a functionally useful way. Therefore, we suggest that the cause of cortical separation is the specific drive of subcortical structures needed to generate different types of movements rather than different behavioral contexts in which the movements are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.