The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.
Neuropeptides are important messenger molecules that influence nearly all physiological processes. In insects, they can be released as neuromodulators within the central nervous system (CNS) or as neurohormones into the hemolymph. We analyzed the peptidome of neurohormonal release sites and associated secretory peptidergic neurons of adult Drosophila melanogaster. MALDI-TOF mass spectrometric analyzes were performed on single organs or cell cluster from individual flies. This first peptidomic characterization in adult fruit flies revealed 32 different neuropeptides. Peptides not directly predictable from previously cloned or annotated precursor genes were sequenced by tandem mass spectrometry. These peptides turned out to be either intermediate products of neuropeptide processing or shorter versions of known peptides. We found that the peptidome of the CNS-associated neurohemal organs is tagma-specific in Drosophila. Abdominal neurohemal organs and their supplying peptidergic neurons contain the capa gene products periviscerokinins and pyrokinin-1, thoracic neurohemal organs contain FMRFamides, and the neurohemal release sites of the brain contain pyrokinin-1(2-15), pyrokinin-2, corazonin, myosuppressin, and sNPF as their major putative release products. Our results show that peptidomic approaches are well suited to study differential neuropeptide expression or posttranslational modifications in morphologically defined parts of the nervous system and in a developmental and physiological context in animals as small as Drosophila melanogaster.
Background: Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS) of Drosophila in relation to other neuronal markers.
Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.