The prosthetic group of yeast fatty acid synthase (FAS), 4'-phosphopantetheine, is covalently linked to Ser180 of subunit alpha. It originates from coenzyme A and is transferred to the enzyme by a specific phosphopantetheine:protein transferase (PPTase). The present study demonstrates that the FAS-activating PPTase of yeast represents a distinct catalytic domain of the FAS complex and resides within the C-terminal portion of subunit alpha. The autoactivation capacity of yeast FAS became evident from in vitro pantetheinylation studies using purified apo-FAS preparations. These were readily converted to pantetheinylated holo-FAS simply upon addition of free coenzyme A. Pantetheinylation-competent apo-FAS was prepared in vitro by constructing hybrid oligomers containing alpha-subunits from two different pantetheine-less FAS-mutants. The respective mutants were selected according to their ability to complement each other, in vivo. In vitro formation of hybrid apo-FAS complexes was achieved by dimethylmaleic anhydride (DMMA) -induced reversible dissociation of mixtures of the two constituent mutant enzymes. This treatment was both necessary and sufficient to produce pantetheinylation-competent apo-FAS. Specific FAS activities were comparable independent of whether the apo-enzymes were pantetheinylated in vivo or in vitro. Apart from the induction of overall FAS activity, incorporation of phosphopantetheine into apo-FAS was also demonstrated by the use of 3H-labelled coenzyme A, leading to the formation of radioactively labelled FAS. It is concluded that pantetheinylation of yeast FAS is performed by an intrinsic catalytic activity of the apo-enzyme proper. The endogenous PPTase acts in trans between different subunits alpha in the alpha6beta6 oligomer. The self-pantetheinylation of yeast FAS represents the first example of an apo-enzyme being capable of post-translational autoactivitation.
The Saccharomyces cerevisiae gene BPL1 encodes the enzyme biotin :protein ligase (BPL), which is required for acetyl-CoA carboxylase (ACC) holoenzyme formation. Disruption of one of the two BPL1 alleles present in diploid cells results, upon sporulation, in a 2 ϩ :2 0 segregation of cell viability, with none of the two viable spores being BPL1 negative. In contrast to BPL1 deletants, BPL1 base-substitution mutants are potentially viable and may be isolated as long-chain-fatty-acid-requiring auxotrophs. In addition to ACC pyruvate carboxylase and an additional biotin-containing protein of unknown function fail to be biotinylated in BPL1-defective yeast mutants. In this study, one of these mutants, bpl1-C25/17, is shown to contain an amber stop codon at position 151 of the 689-amino-acid BPL sequence. In bpl1-C25/17 cells, de novo fatty acid synthesis is almost absent (Ͻ 2% of the wild type), while very-longchain fatty acid (VLCFA) synthesis and, to some extent, mediumϪlong-chain fatty acid elongation are still active. Hence, endogenous malonyl-CoA synthesis is reduced but not abolished by the translational stop mutation. A low rate of intact-BPL synthesis is accomplished in the mutant by occasional readthrough of the bpl1-C25/17 UAG nonsense triplet by normal yeast tRNA Gln CAG . Correspondingly, ACC biotinylation is severely reduced though not completely absent in the two bpl1 mutants studied in this work. Residual BPL1 expression in bpl1-C25/17 cells is increased to a level allowing wild-type-like growth by transformation with high copy numbers of either the wild-type tRNA Gln CAG or the mutant bpl1-C25/17 genes. It is concluded that the lethality of BPL1 deletants is due to the lack of malonyl-CoAϪ dependent VLCFA synthesis and that the viability of distinct ACC-defective point mutants is due to their maintenance of a critical level of malonyl-CoA and, hence, VLCFA production. The residual capacity of malonyl-CoA synthesis, though, is inadequate to allow cytoplasmic bulk de novo fatty acid synthesis, nor does it support mutant growth on 13:0 as the only dietary fatty acid. ACC-defective mutants are respiratory deficient, which is attributed to the failure of mitochondrial fatty acid synthesis. Since lipoic acid levels of ACC1 and BPL1 mutants are essentially normal, an unknown product of mitochondrial fatty acid synthesis appears to be critically reduced in malonyl-CoAϪdeficient yeast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.