The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation.
The intrauterine environment is a major contributor to increased rates of metabolic disease in adults. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy that affects 0.5%-2% of pregnant women and is characterized by increased bile acid levels in the maternal serum. The influence of ICP on the metabolic health of offspring is unknown. We analyzed the Northern Finland birth cohort 1985-1986 database and found that 16-year-old children of mothers with ICP had altered lipid profiles. Males had increased BMI, and females exhibited increased waist and hip girth compared with the offspring of uncomplicated pregnancies. We further investigated the effect of maternal cholestasis on the metabolism of adult offspring in the mouse. Females from cholestatic mothers developed a severe obese, diabetic phenotype with hepatosteatosis following a Western diet, whereas matched mice not exposed to cholestasis in utero did not. Female littermates were susceptible to metabolic disease before dietary challenge. Human and mouse studies showed an accumulation of lipids in the fetoplacental unit and increased transplacental cholesterol transport in cholestatic pregnancy. We believe this is the first report showing that cholestatic pregnancy in the absence of altered maternal BMI or diabetes can program metabolic disease in the offspring.
Immunoblotting assays using commercial antibodies were established to investigate the unexpected persistence of the immunoactive Cry1Ab protein in the bovine gastrointestinal tract (GIT) previously suggested by enzyme-linked immunosorbent assay (ELISA). Samples of two different feeding experiments in cattle were analyzed with both ELISA and immunoblotting methods. Whereas results obtained by ELISA suggested that the concentration of the Cry1Ab protein increased during the GIT passage, the immunoblotting assays revealed a significant degradation of the protein in the bovine GIT. Samples showing a positive signal in the ELISA consisted of fragmented Cry1Ab protein of approximately 17 and 34 kDa size. Two independent sets of gastrointestinal samples revealed the apparent discrepancy between the results obtained by ELISA and immunoblotting, suggesting that the antibody used in the ELISA reacts with fragmented yet immunoactive epitopes of the Cry1Ab protein. It was concluded that Cry1Ab protein is degraded during digestion in cattle. To avoid misinterpretation, samples tested positive for Cry1Ab protein by ELISA should be reassessed by another technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.