Milk production in dairy cows has dramatically increased over the past few decades. The selection for higher milk yield affects the partitioning of available nutrients, with more energy being allocated to milk synthesis and less to physiological processes essential to fertility and fitness. In this study, the abundance of numerous milk metabolites in early and late lactation was systematically investigated, with an emphasis on metabolites related to energy metabolism. The aim of the study was the identification and correlation of milk constituents to the metabolic status of the cows. To investigate the influence of lactation stage on physiological and metabolic variables, 2 breeds of different productivity were selected for investigation by high-resolution nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We could reliably quantify 44 different milk metabolites. The results show that biomarkers such as acetone and beta-hydroxybutyrate are clearly correlated to the metabolic status of the individual cows during early lactation. Based on these data, the selection of cows that cope well with the metabolic stress of early lactation should become an option.
Ketosis is a common metabolic disease in dairy cows. Diagnostic markers for ketosis such as acetone and beta-hydroxybutyric acid (BHBA) are known, but disease prediction remains an unsolved challenge. Milk is a steadily available biofluid and routinely collected on a daily basis. This high availability makes milk superior to blood or urine samples for diagnostic purposes. In this contribution, we show that high milk glycerophosphocholine (GPC) levels and high ratios of GPC to phosphocholine (PC) allow for the reliable selection of healthy and metabolically stable cows for breeding purposes. Throughout lactation, high GPC values are connected with a low ketosis incidence. During the first month of lactation, molar GPC/PC ratios equal or greater than 2.5 indicate a very low risk for developing ketosis. This threshold was validated for different breeds (Holstein-Friesian, Brown Swiss, and Simmental Fleckvieh) and for animals in different lactations, with observed odds ratios between 1.5 and 2.38. In contrast to acetone and BHBA, these measures are independent of the acute disease status. A possible explanation for the predictive effect is that GPC and PC are measures for the ability to break down phospholipids as a fatty acid source to meet the enhanced energy requirements of early lactation.
Immunoblotting assays using commercial antibodies were established to investigate the unexpected persistence of the immunoactive Cry1Ab protein in the bovine gastrointestinal tract (GIT) previously suggested by enzyme-linked immunosorbent assay (ELISA). Samples of two different feeding experiments in cattle were analyzed with both ELISA and immunoblotting methods. Whereas results obtained by ELISA suggested that the concentration of the Cry1Ab protein increased during the GIT passage, the immunoblotting assays revealed a significant degradation of the protein in the bovine GIT. Samples showing a positive signal in the ELISA consisted of fragmented Cry1Ab protein of approximately 17 and 34 kDa size. Two independent sets of gastrointestinal samples revealed the apparent discrepancy between the results obtained by ELISA and immunoblotting, suggesting that the antibody used in the ELISA reacts with fragmented yet immunoactive epitopes of the Cry1Ab protein. It was concluded that Cry1Ab protein is degraded during digestion in cattle. To avoid misinterpretation, samples tested positive for Cry1Ab protein by ELISA should be reassessed by another technique.
The objective was to compare the effects of 3 management systems in high-yielding dairy cows on metabolic profiles and milk production. Thirty-six multiparous Brown Swiss cows were randomly assigned to 1 of 3 treatment groups (n=12 cows/group): the control (C) group, in which cows were dried off 56 d before calving and milked twice daily throughout next lactation (305 d); the once daily milking (ODM) group, in which cows were dried off 56 d before calving and milked once daily for the first 4 wk of lactation and twice daily for the remaining lactation; and the continuous milking (CM) group, in which cows were milked twice daily until calving and also during the subsequent lactation. Serum glucose concentrations decreased between wk 1 and 4 exclusively in C cows. Serum concentrations of NEFA and BHBA in the first 4 wk of lactation were highest in C cows compared with ODM and CM cows. Decreased backfat thickness during early lactation and reduction of body condition score were markedly more pronounced in C cows compared with ODM and CM cows. Mean lactational milk yield of C cows [11,310+/-601 kg of energy-corrected milk (ECM)/305 d] was approximately 16% higher compared with ODM cows (9,531+/-477 kg of ECM/305 d) and CM cows (9,447+/-310 kg of ECM/305 d). The lactation curve of CM cows compared with C cows was characterized by a similar time of peak yield (wk 3), a reduced peak yield, and no obvious differences in persistency. Mean percentage of milk protein was significantly higher for CM cows (3.91%) compared with C cows (3.52%). In contrast, once daily milking was accompanied by a reduced and significantly delayed peak yield (wk 8) compared with the control treatment, whereas persistency was better and milk protein (3.79%) was higher in ODM cows than in C cows. In conclusion, continuous milking and once daily milking, targeting the interval before or after calving, respectively, substantially reduced the metabolic challenge of fresh cows and improved milk protein percentage. Continuous milking and once daily milking increased milk protein percentage markedly; furthermore, once daily milking during the first 4 wk of lactation improved the lactation curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.