The unsuitability of the “CFU” parameter and the usefulness of cultivation-independent quantification of Campylobacter on chicken products, reflecting the actual risk for infection, is increasingly becoming obvious. Recently, real-time PCR methods in combination with the use of DNA intercalators, which block DNA amplification from dead bacteria, have seen wide application. However, much confusion exists in the correct interpretation of such assays. Campylobacter is confronted by oxidative and cold stress outside the intestine. Hence, damage caused by oxidative stress probably represents the most frequent natural death of Campylobacter on food products. Treatment of Campylobacter with peroxide led to complete loss of CFU and to significant entry of any tested DNA intercalator, indicating disruption of membrane integrity. When we transiently altered the metabolic state of Campylobacter by abolishing the proton-motive force or by inhibiting active efflux, CFU was constant but enhanced entry of ethidium bromide (EtBr) was observed. Consistently, ethidium monoazide (EMA) also entered viable Campylobacter, in particular when nutrients for bacterial energization were lacking (in PBS) or when the cells were less metabolically active (in stationary phase). In contrast, propidium iodide (PI) and propidium monoazide (PMA) were excluded from viable bacterial cells, irrespective of their metabolic state. As expected for a diffusion-limited process, the extent of signal reduction from dead cells depended on the temperature, incubation time and concentration of the dyes during staining, prior to crosslinking. Consistently, free protein and/or DNA present in varying amounts in the heterogeneous matrix lowered the concentration of the DNA dyes at the bacterial membrane and led to considerable variation of the residual signal from dead cells. In conclusion, we propose an improved approach, taking into account principles of method variability and recommend the implementation of process sample controls for reliable quantification of intact and potentially infectious units (IPIU) of Campylobacter by real-time PCR.
We investigated trends in antimicrobial resistance (AMR) in Campylobacter jejuni and Campylobacter coli in poultry between 2010 and 2016 in Germany and their association with antimicrobial use. Campylobacter had been isolated from the caeca of broilers and turkeys at slaughter by regional laboratories according to current ISO methods in the framework of a national monitoring program. Isolates were submitted to the National Reference Laboratory for Campylobacter and tested for AMR using broth microdilution methods. Minimum inhibitory concentrations were evaluated according to epidemiological cut-off values. Antimicrobial use (AMU) data from 2014 to 2016 were taken from a government report. AMR was higher in C. coli than in C. jejuni and higher in turkeys than in broilers. AMR was highest to tetracycline and the tested (fluoro)quinolones while it was rare to gentamicin in both bacterial species, infrequent to erythromycin in C. jejuni, and moderate in C. coli. AMR to tetracycline and erythromycin decreased over time while it increased to (fluoro)quinolones. An association of AMU and AMR was observed for resistance to tetracycline and erythromycin, while it was not observed for the aminoglycosides. Resistance to nalidixic acid and ciprofloxacin increased despite a decrease of fluoroquinolone use between 2014 and 2016, indicating that other factors have a strong influence on resistance to (fluoro)quinolones in Campylobacter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.