BackgroundA subset of patients with multiple sclerosis (MS) shows an increased endogenous IFN-like activity before initiation of IFN-beta treatment. The molecular basis of this phenomenon and its relevance to predict individual therapy outcomes are not yet fully understood. We studied the expression patterns of these patients, the prognostic value of an elevated IFN-like activity, and the gene regulatory effects of exogenously administered IFN-beta.MethodsMicroarray gene expression profiling was performed for 61 MS patients using peripheral blood mononuclear cells obtained before and after 1 month of IFN-beta therapy. Expression levels of genes involved in pathways either inducing or being activated by IFN-beta were compared between patients with high (MX1high cohort) and low (MX1low cohort) endogenous IFN-like activity. Patients were followed for 5 years and relapses as well as progression on the expanded disability status scale (EDSS) were documented.ResultsBefore the start of therapy, 11 patients presented elevated mRNA levels of IFN-stimulated genes indicative of a relatively high endogenous IFN-like activity (MX1high). In these patients, pathogen receptors (for example, TLR7, RIG-I and IFIH1) and transcription factors were also expressed more strongly, which could be attributed to an overactivity of IFN-stimulated gene factor 3 (ISGF3, a complex formed by STAT1, STAT2 and IFN regulatory factor 9). After 1 month of IFN-beta therapy, the expression of many pathway genes was significantly induced in MX1low patients, but remained unaltered in MX1high patients. During follow-up, relapse rate and changes in EDSS were comparable between both patient groups, with differences seen between different types of IFN-beta drug application.ConclusionsTherapeutic IFN-beta induces the transcription of several genes involved in IFN-related pathways. In a subgroup of MS patients, the expression of these genes is already increased before therapy initiation, possibly driven by an overexpression of ISGF3. Patients with high and low endogenous IFN-like activity showed similar clinical long-term courses of disease. Different results were obtained for different IFN-beta drug preparations, and this merits further investigation.
Therapy with interferon-beta (IFN-beta) is a mainstay in the management of relapsing-remitting multiple sclerosis (MS), with proven long-term effectiveness and safety. Much has been learned about the molecular mechanisms of action of IFN-beta in the past years. Previous studies described more than a hundred genes to be modulated in expression in blood cells in response to the therapy. However, for many of these genes, the precise temporal expression pattern and the therapeutic relevance are unclear. We used Affymetrix microarrays to investigate in more detail the gene expression changes in peripheral blood mononuclear cells from MS patients receiving subcutaneous IFN-beta-1a. The blood samples were obtained longitudinally at five different time points up to 2 years after the start of therapy, and the patients were clinically followed up for 5 years. We examined the functions of the genes that were upregulated or downregulated at the transcript level after short-term or long-term treatment. Moreover, we analyzed their mutual interactions and their regulation by transcription factors. Compared to pretreatment levels, 96 genes were identified as highly differentially expressed, many of them already after the first IFN-beta injection. The interactions between these genes form a large network with multiple feedback loops, indicating the complex crosstalk between innate and adaptive immune responses during therapy. We discuss the genes and biological processes that might be important to reduce disease activity by attenuating the proliferation of autoreactive immune cells and their migration into the central nervous system. In summary, we present novel insights that extend the current knowledge on the early and late pharmacodynamic effects of IFN-beta therapy and describe gene expression differences between the individual patients that reflect clinical heterogeneity.
Aging affects most living organisms and includes the processes that reduce health and survival. The chronological and the biological age of individuals can differ remarkably, and there is a lack of reliable biomarkers to monitor the consequences of aging. In this review we give an overview of commonly mentioned and frequently used potential aging-related biomarkers. We were interested in biomarkers of aging in general and in biomarkers related to cellular senescence in particular. To answer the question whether a biological feature is relevant as a potential biomarker of aging or senescence in the scientific community we used the PICO strategy known from evidence-based medicine. We introduced two scoring systems, aimed at reflecting biomarker relevance and measurement effort, which can be used to support study designs in both clinical and research settings.
Aging is a process that affects almost all multicellular organisms and since our population ages with increasing prevalence of age-related diseases, it is important to study basic processes involved in aging. Many studies have been published so far using different and often single age markers to estimate the biological age of organisms or different cell culture systems. However, comparability of studies is often hampered by the lack of a uniform panel of age markers. Consequently, we here suggest an easy-to-use biomarker-based panel of classical age markers to estimate the biological age of cell culture systems that can be used in standard cell culture laboratories. This panel is shown to be sensitive in a variety of aging conditions. We used primary human skin fibroblasts of different donor ages and additionally induced either replicative senescence or artificial aging by progerin overexpression. Using this panel, highest biological age was found for artificial aging by progerin overexpression. Our data display that aging varies depending on cell line and aging model and even from individual to individual showing the need for comprehensive analyses.
Background and Objectives: The physiological oxygen tension in fetal brains (∼3%, physioxia) is beneficial for the maintenance of neural stem cells (NSCs). Sensitivity to oxygen varies between NSCs from different fetal brain regions, with midbrain NSCs showing selective susceptibility. Data on Hif-1α/Notch regulatory interactions as well as our observations that Hif-1α and oxygen affect midbrain NSCs survival and proliferation prompted our investigations on involvement of Notch signalling in physioxia-dependent midbrain NSCs performance. Methods and Results: Here we found that physioxia (3% O2) compared to normoxia (21% O2) increased proliferation, maintained stemness by suppression of spontaneous differentiation and supported cell cycle progression. Microarray and qRT-PCR analyses identified significant changes of Notch related genes in midbrain NSCs after long-term (13 days), but not after short-term physioxia (48 hours). Consistently, inhibition of Notch signalling with DAPT increased, but its stimulation with Dll4 decreased spontaneous differentiation into neurons solely under normoxic but not under physioxic conditions. Conclusions: Notch signalling does not influence the fate decision of midbrain NSCs cultured in vitro in physioxia, where other factors like Hif-1α might be involved. Our findings on how physioxia effects in midbrain NSCs are transduced by alternative signalling might, at least in part, explain their selective susceptibility to oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.