We have recently reported that poly-SUMO-2/3 conjugates are subject to a ubiquitin-dependent proteolytic control in human cells. Here we show that arsenic trioxide (ATO) increases SUMO-2/3 modification of promyelocytic leukemia (PML) leading to its subsequent ubiquitylation in vivo. The SUMObinding ubiquitin ligase RNF4 mediates this modification and causes disruption of PML nuclear bodies upon treatment with ATO. Reconstitution of SUMO-dependent ubiquitylation of PML by RNF4 in vitro and in a yeast trans vivo system revealed a preference of RNF4 for chain forming SUMOs. Polysumoylation of PML in response to ATO thus leads to its recognition and ubiquitylation by RNF4.
RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.