Diffusion-weighted MRI shows promise in differentiation of benign and malignant masses and lesions with nonmasslike enhancement found at breast MRI and is not affected by lesion size. However, ADC measurements may be more useful for discriminating masses than for discriminating lesions with nonmasslike enhancement.
Background: Strong background parenchymal enhancement (BPE) may cause overestimation in tumor volume measured from dynamic contrast-enhanced (DCE) MRI, which may adversely affect the ability of MR tumor volume to predict treatment outcome for patients undergoing neoadjuvant chemotherapy (NAC). Specifically, an overestimation of tumor volume can result in misclassification of patients with complete pathologic response (pCR) as non-responders, leading to less confidence in MRI prediction. As well, overestimation of extent of disease might lead to more aggressive surgical therapy than necessary. This study investigated whether high BPE in the contralateral breast influences the predictive performance of MRI-measured functional tumor volume (FTV) for patients with locally advanced breast cancer undergoing NAC. Methods: patients (n=990) enrolled in the I-SPY 2 TRIAL who were randomized to the graduated experimental drug arms or controls from 2010 to 2016 were analyzed. Each patient had 4 MRI exams: pre-NAC (T0), after 3 weeks of NAC (T1), between NAC regimens (T2), and post-NAC (T3). FTV was calculated at each MRI exam by summing voxels meeting enhancement thresholds. Background parenchymal enhancement (BPE) in the contralateral breast was calculated automatically as mean percentage enhancement on the early (nominal 150sec post-contrast) image in the fibroglandular tissue segmented from 5 continuous axial slices centered in the inferior-to-superior stack. For each treatment time point, patients having both FTV and BPE measurements were included in the analysis. The area under the ROC curve (AUC) was estimated as the association between FTV and pCR at T1, T2, and T3. The analysis was conducted in the full patient cohort and in sub-cohorts defined by hormone receptor (HR) and HER2 status. In each patient cohort, a cut-off BPE value was selected to classify patients with high vs. low BPE by testing AUCs estimated with low-BPE patients reached maximum when the cut-off value varied from median to maximum in steps of 10%. Results: Out of 990 patients, 878 had pCR outcome data (pCR or non-pCR, pCR rate = 35%). Table 1 shows the number of patients, pCR rate, and AUC of FTV for predicting pCR using all patients available vs. a subset patients with low BPE (< BPE cut-off). In the full cohort, AUC increased slightly across all time points after patients with high BPE were removed. In the HR+/HER2- subtype, AUC increased at T1 after removal of cases with high BPE (0.65 vs. 0.71). For HR-/HER2+, AUC increased substantially after removal of high BPE cases (0.65 to 0.86 at T1, 0.71 to 0.87 at T2, and 0.71 to 0.89 at T3), with greater improvement at the early time point (T1) compared to later time points (T2 and T3). Only a slight improvement in the AUC was observed in the HR+/HER2+ and HR-/HER2- subtypes across all time points. Conclusions: High background parenchymal enhancement adversely affected the predictive performance of functional tumor volume measured by DCE-MRI, at early treatment time point for HR+/HER2- and across all time points for HR-/HER2+ cancer subtype. The adverse effect might be offset using subtype-optimized enhancement threshold in calculating functional tumor volume. Table 1 Effect of BPE on the prediction of pCR using FTV at various treatment time pointsT1T2T3npCR rateAUCBPE cut-offnpCR rateAUCBPE cut-offnpCR rateAUCBPE cut-offFullAll64734%0.662762334%0.701761134%0.6925Subset45334%0.6831133%0.7230534%0.72HR+/HER2-All26218%0.651924918%0.718225518%0.7519Subset13118%0.7124818%0.7120419%0.76HR+/HER2+All10636%0.642110538%0.62269634%0.7120Subset5332%0.668438%0.665740%0.73HR-/HER2+All5175%0.65204774%0.71204973%0.7116Subset3073%0.862871%0.872475%0.89HR-/HER2-All22842%0.682822243%0.751821143%0.6916Subset15940%0.7111137%0.7810540%0.75 Citation Format: Wen Li, Natsuko Onishi, David C Newitt, Roy Harnish, Ella F Jones, Lisa J Wilmes, Jessica Gibbs, Elissa Price, Bonnie N Joe, A. Jo Chien, Donald A Berry, Judy C Boughey, Kathy S Albain, Amy S Clark, Kirsten K Edmiston, Anthony D Elias, Erin D Ellis, David M Euhus, Heather S Han, Claudine Isaacs, Qamar J Khan, Julie E Lang, Janice Lu, Jane L Meisel, Zaha Mitri, Rita Nanda, Donald W Northfelt, Tara Sanft, Erica Stringer-Reasor, Rebecca K Viscusi, Anne M Wallace, Douglas Yee, Rachel Yung, Michelle E Melisko, Jane Perlmutter, Hope S Rugo, Richard Schwab, W. Fraser Symmans, Laura J van't Veer, Christina Yau, Smita M Asare, Angela DeMichele, Sally Goudreau, Hiroyuki Abe, Deepa Sheth, Dulcy Wolverton, Kelly Fountain, Richard Ha, Ralph Wynn, Erin P Crane, Charlotte Dillis, Theresa Kuritza, Kevin Morley, Michael Nelson, An Church, Bethany Niell, Jennifer Drukteinis, Karen Y Oh, Neda Jafarian, Kathy Brandt, Sadia Choudhery, Dae Hee Bang, Christiane Mullins, Stefanie Woodard, Kathryn W Zamora, Haydee Ojeda-Fornier, Mohammad Eghedari, Pulin Sheth, Linda Hovanessian-Larsen, Mark Rosen, Elizabeth S McDonald, Michael Spektor, Marina Giurescu, Mary S Newell, Michael A Cohen, Elise Berman, Constance Lehman, William Smith, Kim Fitzpatrick, Marisa H Borders, Wei Yang, Basak Dogan, Laura J Esserman, Nola M Hylton. The effect of background parenchymal enhancement on the predictive performance of functional tumor volume measured in MRI [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr P6-02-01.
Background: In an adaptive randomized trial, when new treatment combinations are being tested, it is important to be able to identify patients who are progressing on treatment so that they can be changed to a different therapeutic regimen. We know that even within the molecularly high risk patients in I-SPY 2, there is considerable variation in biology. In this study, we will present results of using MRI-calculated functional tumor volume (FTV) to identify tumor progression for each breast cancer subtype. Methods: Patients (n=990) enrolled in the I-SPY 2 TRIAL who were randomized to the graduated experimental drug arms or controls from 2010 to 2016 were analyzed. Four MRI exams were performed for each patient: pre-NAC (T0), after 3 weeks of NAC (T1), between regimens (T2), and post-NAC (T3). Functional tumor volume (FTV) was calculated at each exam by summing voxels meeting enhancement thresholds. Tumor progression at T1, T2 or T3 was identified by a positive FTV change relative to T0. Visual inspection was used to exclude false progression due to strong background parenchymal enhancement post-contrast, prominent vessels, motion, or insufficient image quality. pCR was defined as no invasive disease in the breast and lymph nodes. Negative predictive value for pCR was defined as:NPV=number of true non-pCRs / number of patients with MRI assessed tumor progressions, where “true non-pCRs” referred to patients who were non-pCRs at surgery and were assessed as progressors by MRI. The analysis was performed in the full cohort and in sub-cohorts defined by HR and HER2 statuses. Results: Out of 990 patients, 878 had pCR outcome data (pCR or non-pCR, pCR rate = 35%). Total and non-pCR numbers for each subtype, number of patients with tumor progression assessed by MRI at T1, T2, and T3, and NPVs, are shown in Table 1. In the full cohort, the NPV increased consistently over treatment, from T1 (NPV=83%) to T2 (93%), and to T3 (100%). The HER2+ cancer subtypes showed fewer MRI-assessed tumor progressions than HER2- subtypes: e.g. 10/209 (5%) vs. 108/669 (16%) at T1. NPV was 100% for HER2+ subtypes at T1 and T2 except for a single misclassification of a HR- tumor at T1. Only 6 tumor progressors, all HER2- were identified at T3, and all were confirmed at surgery as non-pCRs (NPV=100%). For HR+/HER2-, the NPV increased slightly from 89% at T1 to 91% at T2, while triple negative subtype had a more substantial increase, from 78% to 92%. Conclusions: Our study showed strong association between tumor progressors assessed by MRI with true non-pCRs after NAC. For HER2+ tumors, although MRI progressors are rare, they strongly indicate non-pCR at all treatment time points, while HER2- subtypes show more accurate results later in treatment. We are evaluating MRI change at 6 weeks to determine if that time point is sufficient to predict progressors. Table 1 MRI assessed tumor progression at different treatment time pointN/non-pCRs/%non-pCRMRI assessed tumor progressionT1 (after 3 weeks)T2 (inter-regimen)T3 (post-NAC)NNPV (%)NNPV (%)NNPV (%)Full cohort878/572/65%11883.14192.76100%HR+/HER2-344/280/81%4588.91190.93100%HR+/HER2+134/85/63%610021000N/AHR-/HER2+75/23/31%47521000N/Atriple negative325/184/57%6377.82692.33100% Citation Format: Wen Li, Natsuko Onishi, David C Newitt, Jessica Gibbs, Lisa J Wilmes, Ella F Jones, Bonnie N Joe, Laura S Sit, Christina Yau, A. Jo Chien, Elissa Price, Kathy S Albain, Theresa Kuritza, Kevin Morley, Judy C Boughey, Kathy Brandt, Sadia Choudhery, Amy S Clark, Mark Rosen, Elizabeth S McDonald, Anthony D Elias, Dulcy Wolverton, Kelly Fountain, David M Euhus, Heather S Han, Bethany Niell, Jennifer Drukteinis, Julie E Lang, Janice Lu, Jane L Meisel, Zaha Mitri, Rita Nanda, Donald W Northfelt, Tara Sanft, Erica Stringer-Reasor, Rebecca K Viscusi, Anne M Wallace, Douglas Yee, Rachel Yung, Smita M Asare, Michelle E Melisko, Jane Perlmutter, Hope S Rugo, Richard Schwab, W. Fraser Symmans, Laura J van't Veer, Donald A Berry, Angela DeMichele, Hiroyuki Abe, Deepa Sheth, Kirsten K Edmiston, Erin D Ellis, Richard Ha, Ralph Wynn, Erin P Crane, Charlotte Dillis, Michael Nelson, An Church, Claudine Isaacs, Qamar J Khan, Karen Y Oh, Neda Jafarian, Dae Hee Bang, Christiane Mullins, Stefanie Woodard, Kathryn W Zamora, Haydee Ojeda-Fornier, Pulin Sheth, Linda Hovanessian-Larsen, Mohammad Eghtedari, Michael Spektor, Marina Giurescu, Mary S Newell, Michael A Cohen, Elise Berman, Constance Lehman, William Smith, Kim Fitzpatrick, Marisa H Borders, Wei Yang, Basak Dogan, Sally Goudreau, Thelma Brown, Laura J Esserman, Nola M Hylton. Breast cancer subtype specific association of pCR with MRI assessed tumor volume progression during NAC in the I-SPY 2 trial [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr PD9-04.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.