The cell cycle of the fission yeast, Schizosaccharomyces pombe, does not easily lend itself to analysis by flow cytometry, mainly because cells in G1 and G2 phase contain the same amount of DNA. This occurs because fission yeast cells under standard growth conditions do not complete cytokinesis until after G1 phase. We have devised a flow cytometric method exploiting the fact that cells in G1 phase contain two nuclei, whereas cells in G2 are mononuclear. Measurements of the width as well as the total area of the DNA-associated fluorescence signal allows the discrimination between cells in G1 and in G2 phase and the cell-cycle progression of fission yeast can be followed in detail by flow cytometry. Furthermore, we show how this method can be used to monitor the timing of cell entry into anaphase. Fission yeast cells tend to form multimers, which represents another problem of flow cytometry-based cell-cycle analysis. Here we present a method employing light-scatter measurements to enable the exclusion of cell doublets, thereby further improving the analysis of fission yeast cells by flow cytometry.
Purpose This is an official S3-guideline of the German Society of Gynaecology and Obstetrics (DGGG), the Austrian Society of Gynaecology and Obstetrics (ÖGGG) and the Swiss Society of Gynaecology and Obstetrics (SGGG). The guideline contains evidence-based information and recommendations on indications, complications, methods and care associated with delivery by caesarean section for all medical specialties involved as well as for pregnant women. Methods This guideline has adapted information and recommendations issued in the NICE Caesarean Birth guideline. This guideline also considers additional issues prioritised by the Cochrane Institute and the Institute for Research in Operative Medicine (IFOM). The evaluation of evidence was based on the system developed by the Scottish Intercollegiate Guidelines Network (SIGN). A multi-part nominal group process moderated by the AWMF was used to compile this S3-level guideline. Recommendations Recommendations on consultations, indications and the process of performing a caesarean section as well as the care provided to the mother and neonate were drawn up.
Cyclin Dependent Kinases (CDKs) are important regulators of DNA replication. In this work we have investigated the consequences of increasing or decreasing the CDK activity in S phase. To this end we identified S-phase regulators of the fission yeast CDK, Cdc2, and used appropriate mutants to modulate Cdc2 activity. In fission yeast Mik1 has been thought to be the main regulator of Cdc2 activity in S phase. However, we find that Wee1 has a major function in S phase and thus we used wee1 mutants to investigate the consequences of increased Cdc2 activity. These wee1 mutants display increased replication stress and, particularly in the absence of the S-phase checkpoint, accumulate DNA damage. Notably, more cells incorporate EdU in a wee1(-) strain as compared to wildtype, suggesting altered regulation of DNA replication. In addition, a higher number of cells contain chromatin-bound Cdc45, an indicator of active replication forks. In addition, we found that Cdc25 is required to activate Cdc2 in S phase and used a cdc25 mutant to explore a situation where Cdc2 activity is reduced. Interestingly, a cdc25 mutant has a higher tolerance for replication stress than wild-type cells, suggesting that reduced CDK activity in S phase confers resistance to at least some forms of replication stress.
Flow cytometry can be used to measure the DNA content of individual cells. The data are usually presented as DNA histograms that can be used to examine the cells' progression through the cell cycle. Under standard growth conditions, fission yeast cells do not complete cytokinesis until after G1 phase; therefore, DNA histograms show one major peak representing cells in G1 (2×1C DNA) and G2 phase (1×2C DNA). By analysis of the duration of the fluorescence signal as well as the intensity of the DNA-related signal, it is possible to discriminate between cells in M/G1, S, and G2 This protocol describes how to prepare cells for flow cytometry and analyze them. We also describe the application of barcoding for more accurate comparison of samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.