The cell cycle of the fission yeast, Schizosaccharomyces pombe, does not easily lend itself to analysis by flow cytometry, mainly because cells in G1 and G2 phase contain the same amount of DNA. This occurs because fission yeast cells under standard growth conditions do not complete cytokinesis until after G1 phase. We have devised a flow cytometric method exploiting the fact that cells in G1 phase contain two nuclei, whereas cells in G2 are mononuclear. Measurements of the width as well as the total area of the DNA-associated fluorescence signal allows the discrimination between cells in G1 and in G2 phase and the cell-cycle progression of fission yeast can be followed in detail by flow cytometry. Furthermore, we show how this method can be used to monitor the timing of cell entry into anaphase. Fission yeast cells tend to form multimers, which represents another problem of flow cytometry-based cell-cycle analysis. Here we present a method employing light-scatter measurements to enable the exclusion of cell doublets, thereby further improving the analysis of fission yeast cells by flow cytometry.
Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphorylation of eIF2α has been taken as a readout for downregulation of translation, but the role of eIF2α phosphorylation in the downregulation of general translation has not been much investigated. We show here that UV-induced global inhibition of translation in fission yeast cells is independent of eIF2α phosphorylation and the eIF2α kinase general control nonderepressible-2 protein (Gcn2). Also, in budding yeast and mammalian cells, the UV-induced translational depression is largely independent of GCN2 and eIF2α phosphorylation. Furthermore, exposure of fission yeast cells to oxidative stress generated by hydrogen peroxide induced an inhibition of translation that is also independent of Gcn2 and of eIF2α phosphorylation. Our findings show that stress-induced translational inhibition occurs through an unknown mechanism that is likely to be conserved through evolution.
Here we characterize a novel protein in S. pombe. It has a high degree of homology with the Zn-finger domain of the human Poly(ADP-ribose) polymerase (PARP). Surprisingly, the gene for this protein is, in many fungi, fused with and in the same reading frame as that encoding Rad3, the homologue of the human ATR checkpoint protein. We name the protein Hpz1 (Homologue of PARP-type Zn-finger). Hpz1 does not possess PARP activity, but is important for resistance to ultraviolet light in the G1 phase and to treatment with hydroxyurea, a drug that arrests DNA replication forks in the S phase. However, we find no evidence of a checkpoint function of Hpz1. Furthermore, absence of Hpz1 results in an advancement of S-phase entry after a G1 arrest as well as earlier recovery from a hydroxyurea block. The hpz1 gene is expressed mainly in the G1 phase and Hpz1 is localized to the nucleus. We conclude that Hpz1 regulates the initiation of the S phase and may cooperate with Rad3 in this function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.