[1] Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of leftlateral transform motion between the African and Arabian plates since early Miocene ($20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/ Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mm to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5 -20 m wide at this depth range.
Complex special inspection of an old masonry arch bridge according to the Guideline on Inspection and Condition Assessment of Railway Bridges and numerical analysis of the structure are presented. The guideline summarises recommendations for the step-by-step investigation of railway bridges applying enhanced methods developed during the EU-funded project Sustainable Bridges. For the investigation of the arch barrel, the ballast parameters and the inner structure of the backfill behind the arch barrel a number of various advanced non-destructive and minordestructive testing methods were applied. Deformation of the structure during load tests was measured using three independent measuring systems: laser vibrometer, LVDT and microwave radar. Results of calculations performed with 2D and 3D models based on FEM are compared with the field load tests. Sensitivity of the ultimate load of the structure to investigated parameters is studied in FE model. Some general conclusions according to methods of testing and modelling of masonry arch bridges are presented and discussed.
Non-destructive tests (NDT) are an essential tool used in special inspections to gather detailed information about the condition of a bridge. The inspection of bridge decks is a critical task, and, currently, can be successfully carried out using a wide range of NDT techniques. Nevertheless, some of these techniques are excessively expensive and time consuming. One of these techniques, the ground penetrating radar (GPR), has been used for some decades in the non-destructive inspection and diagnosis of concrete bridges. GPR is useful to find general information about the true position of reinforcement and tendon ducts, and check the quality of the construction and materials. A significant number of reinforced and prestressed concrete bridges are deteriorating at a rapid rate and need to be repaired and strengthened. During these rehabilitation processes, designers are often faced with a lack of original design plans and unawareness of the real position of reinforcement and tendon ducts. In this paper, three case studies of the use of GPR techniques for the inspection of concrete bridges are presented and analysed. The main aim of this research is to show the strong need and usefulness of these techniques, which can provide non-visible information about structural geometry and integrity required for strengthening and rehabilitation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.