Non-destructive investigation using ground penetrating radar is becoming more popular in the inspection of civil structures. Currently, traditional 2D imaging is used as a preliminary tool to fi nd possible areas of interest for more detailed inspection, which can be accomplished by more advanced techniques like 3D image reconstruction or tomography. In this paper, a general overview of the work done at University of Minho regarding these techniques is presented, together with their limitations and advantages over typical radargrams, with implications for civil engineering applications. For this purpose, data acquisition on two large masonry walls and one large concrete specimen have been carried out, using refl ection mode, 3D reconstruction and transmission tomography. The specimens have been specially built for non-destructive inspection techniques testing, incorporating different materials and internal voids. Radar tomography and 3D image reconstruction techniques provided much more detailed information about structural integrity and shapes and location of the voids, when compared to 2D imaging originally used for potential target identifi cation.
Non-destructive tests (NDT) are an essential tool used in special inspections to gather detailed information about the condition of a bridge. The inspection of bridge decks is a critical task, and, currently, can be successfully carried out using a wide range of NDT techniques. Nevertheless, some of these techniques are excessively expensive and time consuming. One of these techniques, the ground penetrating radar (GPR), has been used for some decades in the non-destructive inspection and diagnosis of concrete bridges. GPR is useful to find general information about the true position of reinforcement and tendon ducts, and check the quality of the construction and materials. A significant number of reinforced and prestressed concrete bridges are deteriorating at a rapid rate and need to be repaired and strengthened. During these rehabilitation processes, designers are often faced with a lack of original design plans and unawareness of the real position of reinforcement and tendon ducts. In this paper, three case studies of the use of GPR techniques for the inspection of concrete bridges are presented and analysed. The main aim of this research is to show the strong need and usefulness of these techniques, which can provide non-visible information about structural geometry and integrity required for strengthening and rehabilitation purposes.
During the construction of concrete structures such as bridges, many deficiencies may occur due to an incorrect application or changes in the original design plans and construction errors. Frequently, areas with very poorly vibrated concrete, insufficiently grouted tendon ducts and incorrectly positioned reinforcement bars appear. Thus, the detection of these construction deficiencies is essential to prevent further damage to the bridge. Subsequently, a concrete specimen was prepared aimed at simulating some of the problems that can occur during the construction. The specimen was then mapped using a GPR system to check the effectiveness of this tool to provide information about those deficiencies. The acquisition was carried out in reflection mode and the results were further processed using 3D reconstruction software in order to obtain a more realistic and comprehensible image. These measurements showed rather good results. The 3D image provided much more detailed information about the elements placed inside the specimen relatively to 2D radargrams, which are generally used for primary target identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.