The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5 -4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium-a primary visual processing region-neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.
The aim of our study was to test for lateralization of magnetic compass orientation in pigeons. Having shown that pigeons are capable of learning magnetic compass directions in an operant task, we wanted to know whether the brain hemispheres contribute differently and how the lateralization pattern relates to findings in other avian species. Birds that had learnt to locate food in an operant chamber by means of magnetic directions were tested for lateralization of magnetic compass orientation by temporarily covering one eye. Successful orientation occurred under all conditions of viewing. Thus, pigeons can perceive and process magnetic compass directions with the right eye and left brain hemisphere as well as the left eye and right brain hemisphere. However, while the right brain hemisphere tended to confuse the learned direction with its opposite (axial response), the left brain hemisphere specifically preferred the correct direction. Our findings demonstrate bilateral processing of magnetic information, but also suggest qualitative differences in how the left and the right brain deal with magnetic cues.
A proof of magnetic compass learning by pigeons under laboratory conditions has been attempted for decades, but all experiments have failed so far. The aim of the present study was to test whether pigeons can learn magnetic compass directions in an operant chamber if magnetic cues are presented as true spatial cues. Experimental sessions were carried out in the local geomagnetic field and in magnetic fields with matched total intensity and inclination, but different directions generated with Helmholtz-coils. Birds demonstrated successful learning with a performance level comparable to that in learning studies with magnetic anomalies. In addition, we compared the data from magnetic learning in the laboratory with performance from homing experiments in the field. The birds that were more successful in the learning experiment had vanishing bearings farther away from the home direction than the group mean at unfamiliar, but not at familiar sites. This might suggest that better learners explore unknown locations in a different way. Our findings represent the first evidence for operant magnetic compass learning in pigeons and also provide a link between behavioural data from the field and the laboratory.
In this study, we investigated how pigeons (Columba livia) represent environmental geometry and landmark information. Birds learned to locate the centre of a square arena by means of geometric cues alone, or by means of both geometric and landmark cues. By manipulating the type of information available at training and testing, we assessed which cues the birds had encoded, and through the use of monocular occlusion we examined how the information was represented by the two brain hemispheres. Our results show that both brain hemispheres encoded geometric and landmark information. During all viewing conditions, the geometric representation was based mainly on an absolute metric for distance. The relative use of geometry and landmarks was experience dependent. With both brain hemispheres available birds relied, to a greater degree, on geometric information and used it in a more integrated way than with either hemisphere alone. Overall, our findings show a different pattern for the hemispheric encoding of geometric and landmark information by the pigeon than that previously reported for the domestic chick. Our results suggest that the organization of spatial information processing in the left and right brain hemispheres of birds may be more diverse than what is currently known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.