Despite the success of contextualized language models on various NLP tasks, it is still unclear what these models really learn. In this paper, we contribute to the current efforts of explaining such models by exploring the continuum between function and content words with respect to contextualization in BERT, based on linguistically-informed insights. In particular, we utilize scoring and visual analytics techniques: we use an existing similarity-based score to measure contextualization and integrate it into a novel visual analytics technique, presenting the model's layers simultaneously and highlighting intra-layer properties and inter-layer differences. We show that contextualization is neither driven by polysemy nor by pure context variation. We also provide insights on why BERT fails to model words in the middle of the functionality continuum. * Contribution to the visualization part. † Equal contribution to the computational linguistics part.
This paper describes DiaSense, a system developed for Task 1 'Unsupervised Lexical Semantic Change Detection' of SemEval-2020. In DiaSense, contextualized word embeddings are used to model word sense changes. This allows for the calculation of metrics which mimic human intuitions about the semantic relatedness between individual use pairs of a target word for the assessment of lexical semantic change. DiaSense is able to detect lexical semantic change in English, German, Latin and Swedish (accuracy = 0.728). Moreover, DiaSense differentiates between weak and strong change.
Language models, such as BERT, construct multiple, contextualized embeddings for each word occurrence in a corpus. Understanding how the contextualization propagates through the model's layers is crucial for deciding which layers to use for a specific analysis task. Currently, most embedding spaces are explained by probing classifiers; however, some findings remain inconclusive. In this paper, we present LMFingerprints, a novel scoring‐based technique for the explanation of contextualized word embeddings. We introduce two categories of scoring functions, which measure (1) the degree of contextualization, i.e., the layerwise changes in the embedding vectors, and (2) the type of contextualization, i.e., the captured context information. We integrate these scores into an interactive explanation workspace. By combining visual and verbal elements, we provide an overview of contextualization in six popular transformer‐based language models. We evaluate hypotheses from the domain of computational linguistics, and our results not only confirm findings from related work but also reveal new aspects about the information captured in the embedding spaces. For instance, we show that while numbers are poorly contextualized, stopwords have an unexpected high contextualization in the models' upper layers, where their neighborhoods shift from similar functionality tokens to tokens that contribute to the meaning of the surrounding sentences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.