Background:Electronic cigarettes (e-cigarettes) generate an aerosol by heating a solution (e-liquid) with a metallic coil. Whether metals are transferred from the coil to the aerosol is unknown.Objective:Our goal was to investigate the transfer of metals from the heating coil to the e-liquid in the e-cigarette tank and the generated aerosol.Methods:We sampled 56 e-cigarette devices from daily e-cigarette users and obtained samples from the refilling dispenser, aerosol, and remaining e-liquid in the tank. Aerosol liquid was collected via deposition of aerosol droplets in a series of conical pipette tips. Metals were reported as mass fractions (μg/kg) in liquids and converted to mass concentrations (mg/m3) for aerosols.Results:Median metal concentrations (μg/kg) were higher in samples from the aerosol and tank vs. the dispenser (all p<0.001): 16.3 and 31.2 vs. 10.9 for Al; 8.38 and 55.4 vs. <0.5 for Cr; 68.4 and 233 vs. 2.03 for Ni; 14.8 and 40.2 vs. 0.476 for Pb; and 515 and 426 vs. 13.1 for Zn. Mn, Fe, Cu, Sb, and Sn were detectable in most samples. Cd was detected in 0.0, 30.4, and 55.1% of the dispenser, aerosol, and tank samples respectively. Arsenic was detected in 10.7% of dispenser samples (median 26.7μg/kg) and these concentrations were similar in aerosol and tank samples. Aerosol mass concentrations (mg/m3) for the detected metals spanned several orders of magnitude and exceeded current health-based limits in close to 50% or more of the samples for Cr, Mn, Ni, and Pb.Conclusions:Our findings indicate that e-cigarettes are a potential source of exposure to toxic metals (Cr, Ni, and Pb), and to metals that are toxic when inhaled (Mn and Zn). Markedly higher concentrations in the aerosol and tank samples versus the dispenser demonstrate that coil contact induced e-liquid contamination. https://doi.org/10.1289/EHP2175
[1] We simulate two-fluid-phase flow at the pore scale using a lattice Boltzmann (LB) approach. Using a parallel processing version of the Shan-Chen model that we developed, we simulate a set of ideal two-fluid systems and a model two-fluid-phase porous medium system comprised of a synthetic packing with a relatively uniform distribution of spheres. We use the set of ideal two-phase systems to validate the approach and provide parameter information, which we then use to simulate a sphere-pack system. The spherepack system is designed to mimic laboratory experiments conducted to evaluate the hysteretic capillary pressure saturation relation for a system consisting of water, tetrachloroethylene, and a glass bead porous medium. Good agreement is achieved between the measured hysteretic capillary pressure saturation relations and the LB simulations when comparing entry pressure, displacement slopes, irreducible saturation, and residual entrapment. Our results further show that while qualitatively similar results are obtained when comparing systems consisting of 1200 spheres and 150 spheres, there is a significant difference between these two levels, suggesting a lower bound on the size of a representative elementary volume.
In this paper, we develop a new correlation for the clean-bed filter coefficient (lambda0) for Brownian particles, for which diffusion is the main deposition mechanism. The correlation is based on numerical Lattice-Boltzmann (LB) simulations in random packings of spheres of uniform diameter. We use LB methods to solve the Navier-Stokes equation for flow and then the advection-diffusion equation for particle transport. We determine a correlation for an "equivalent" single-collector diffusion efficiency, etaD, so that we can compare our predictions to "true" single-collector correlations stemming from unit-cell modeling approaches. We compared our new correlation to experiments on the filtration of latex particles. For small particle diameters, 50 nm < dp < 300 nm, when gravity and interception are negligible, our correlation for etaD predicts measurements better than unit-cell correlations, which overestimate etaD. The good agreement suggests that the representation of three-dimensional transport pathways in porous media plays an important role when modeling transport and deposition of Brownian particles. To model larger particles, for which gravity and interception are important too, we build a correlation for the overall single-collector efficiency eta0 by adding corresponding etaG and nI terms from unit-cell correlations to our etaD model. The resulting correlation predicts experiments with latex particles of dp > 300 nm well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.