Although the electron-mediated spin-spin or J coupling is conventionally viewed as transmitted via covalent bonds, examples of J couplings between atoms that are not formally bonded but are in close proximity (termed "through-space" J couplings) have been reported. In this work, we investigate the observation of homonuclear P J couplings in organochalcogen heterocycles, which occur betweenP in two separate molecules, confirming without doubt their through-space nature. The presence of this interaction is even more surprising for one compound, where it occurs between crystallographically equivalent species. Although crystallographically equivalent species need not be magnetically equivalent in the solid state, owing to the presence of anisotropic interactions, we demonstrate that it is not the shielding anisotropy that lifts magnetic equivalence, in this case, but the presence of heteronuclear couplings to Se. We support our experimental observations with periodic scalar-relativistic density functional theory calculations and coupling density deformation plots to visualize the mechanism of these interesting interactions.
This study reports the preparation of 1‐amino‐1,2,3‐triazole‐3‐oxide (DPX2) and its transformation to 1,2,3,4‐tetrazine‐1‐oxide. DPX‐2 provides insight into a novel N‐oxide/N‐amino high‐nitrogen system, being the first energetic material in this class. The ability of this material to undergo a nitrene insertion forming 1,2,3,4‐tetrazine‐1‐oxide was also studied, and evidence for this material, the first non‐benzoannulated 1,2,3,4‐tetrazine‐1‐oxide, is presented. The existence of both of these materials opens new strategies in energetic materials design. DPX2 was characterized chemically (Infrared, Raman, NMR, X‐ray) and as a high explosive in terms of energetic performances (detonation velocity, pressure, etc.) and sensitivities (impact, friction, electrostatic). DPX‐2 was found to possess good thermal stability and moderate sensitivities, indicating the viability of N‐amino N‐oxides as a strategy for the preparation of new energetic materials.
The syntheses of a sterically demanding, multidentate bis(quinaldinyl)phenylphosphine oxide ligand and some Cu(I) and Ag(I) complexes thereof are described. By introducing a methylene group between the quinoline unit and phosphorus, the phosphine oxide ligand gains additional flexibility. This specific ligand design induces not only a versatile coordination chemistry but also a rarely observed and investigated behavior in solution. The flexibility of the birdlike ligand offers the unexpected opportunity of open-wing and closed-wing coordination to the metal. In fact, the determined crystal structures of these complexes show both orientations. Investigations of the ligand in solution show a strong dependency of the chemical shift of the CH 2 protons on the solvent used. Variable-temperature, multinuclear NMR spectroscopy was carried out, and an interesting dynamic behavior of the complexes is observed. Due to the introduced flexibility, the quinaldinyl substituents change their arrangements from open-wing to closed-wing upon cooling, while still staying coordinated to the metal. This change in conformation is completely reversible when warming up the sample. Based on 2D NMR spectra measured at −80 °C, an assignment of the signals corresponding to the different arrangements was possible. Additionally, the copper(I) complex shows reversible redox activity in solution. The combination of structural flexibility of a multidentate ligand and the positive redox properties of the resulting complexes comprises key factors for a possible application of such compounds in transition-metal catalysis. Via a reorganization of the ligand, occurring transition states could be stabilized, and selectivity might be enhanced.
A convenient synthesis route to 2,2'-binaphtho[1,8-de][1,3,2]di-thiaphosphinine () was found. Its stable radical cation 3˙(+) was accessed easily through one-electron oxidation with NOBF4.
The search for efficient and stable new blue luminescent compounds is still ongoing. In this respect, knowledge of the structure-property relationship is essential for the design and evaluation of blue...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.