We present an ionothermal-based method for the simple and low-cost enrichment in 17 O of oxide materials. This is demonstrated for the case of SIZ-4, an ionothermally-prepared aluminophosphate framework with the CHA topology. A preliminary study of unenriched samples of SIZ-4 highlights the importance of the careful choice of template in order to obtain an ordered structure. We then show how an ionothermal synthesis procedure incorporating microlitre quantities of 17 O-enriched H 2 O enables asprepared and calcined samples of SIZ-4 to be obtained with 17 O enrichment levels that are sufficient to enable the recording of high-quality 17 O solid-state NMR spectra. While second-order quadrupolarbroadened resonances are unresolved in 17 O MAS NMR spectra, 17 O double-rotation (DOR) and multiple-quantum (MQ)MAS NMR spectra reveal distinct resonances that are partially assigned by comparison with NMR parameters derived using first-principles calculations. The calculations also enable an investigation of the dependence of 17 O NMR parameters on the local structural environment. We find that both the 17 O isotropic chemical shift and quadrupolar coupling constant show clear dependencies on Al-O-P bond lengths, and angles and will therefore provide a sensitive probe of structure and geometry in aluminophosphate frameworks in future studies.
Cost-effective 17O enrichment of metal–organic frameworks enables the composition and disorder in mixed-metal materials to be determined using NMR spectroscopy.
Highly porous metal-organic frameworks (MOFs), which have undergone exciting developments over the past few decades, show promise for a wide range of applications. However, many studies indicate that they suffer from significant stability issues, especially with respect to their interactions with water, which severely limits their practical potential. Here we demonstrate how the presence of 'sacrificial' bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability. On exposure to water, in contrast to the indiscriminate breaking of coordination bonds that typically results in structure degradation, it is non-structural weak interactions between the MOF's copper paddlewheel clusters that are broken and the framework recovers its as-synthesized, hydrated structure. This MOF retained its structural integrity even after contact with water for one year, whereas HKUST-1, a compositionally similar material that lacks these sacrificial bonds, loses its crystallinity in less than a day under the same conditions.
Solvothermal oxidation of metallic gallium in monoethanolamine for 72 h at 240 °C yields a crystalline sample of γ-Ga 2 O 3 (∼30 nm crystallites). While Rietveld refinement (cubic spinel structure, Fd3̅ m; a = 8.23760(9) Å) reveals that Ga occupies two pairs of octahedral and tetrahedral sites (ideal spinel and nonspinel), it provides no information about their local distribution, which cannot be statistical owing to the short Ga−Ga contacts produced if neighboring ideal spinel and nonspinel sites are simultaneously occupied. To create an atomistic model to reconcile this situation, a 6 × 6 × 6 supercell of the crystal structure is constructed and refined against neutron total scattering data using a reverse Monte Carlo (RMC) approach. This accounts well for the local as well as long-range structure and reveals significant local distortion in the octahedral sites that resembles the structure of thermodynamically stable β-Ga 2 O 3 . 71 Ga solid-state NMR results reveal a octahedral:tetrahedral Ga ratio that is consistent with the model obtained from RMC. Nanocrystalline samples of γ-Ga 2 O 3 are produced by either a short solvothermal reaction (240 °C for 11 h in diethanolamine; ∼15 nm crystallites) or by precipitation from an ethanolic solution of gallium nitrate (∼5 nm crystallites). For these samples, the Bragg scattering profile is broadened by their smaller crystallite size, consistent with transmission electron microscopy results, and analysis of the relative Bragg peak intensities provides evidence that a greater proportion of tetrahedral versus octahedral sites are filled. In contrast, neutron total scattering shows the same average Ga−O distance with decreasing particle size, consistent with 71 Ga solid-state NMR results that indicate that all samples contain the same overall proportion of octahedral:tetrahedral Ga. It is postulated that increased occupation of tetrahedral sites within the smaller crystallites is balanced by an increased proportion of octahedral surface Ga sites, owing to termination by bound solvent or hydroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.