Flow Mixing of two miscible liquids has been characterized experimentally in three different helically coiled reactor configurations of two different lengths in the laminar flow regime at Re = 50…1000. A straight helical coil, a coiled flow inverter, and a new coiled flow reverser have been built, each in a 3-turn and a 6-turn configuration. Laser-induced fluorescence of resorufin has been used to visualize and quantify mixing in cross-sections throughout the reactors. A mixing coefficient is derived from the fluorescence images to allow for a quantitative measure and comparison of the six configurations. It becomes obvious from these experimental results, that an early flow redirection in the helical configuration is beneficial to mixing. The 3-turn reactors achieve nearly the same mixing coefficients as the 6-turn reactors with the double length. This can be explained by the stabilizing effect of the Dean vortices in the helix, which develop during the first two turns. After that, the liquid is trapped inside the vortices and further mixing is inhibited. Accordingly, the coiled flow inverter and coiled flow reverser configurations lead to much higher mixing coefficients than the straight helical coil. The results of these measurements are now used for validation of numerical simulations, which reproduce the geometrical and flow conditions of the experiments. Some exemplary results of these calculations are also shown in this article.
Graphic abstract
Mass fractions of tracer fluid at Re = 500 in the six examined helix configurations.
This study aims to validate the lattice Boltzmann method and assess its ability to accurately describe the behavior of gaseous flows in packed beds. To that end, simulations of a model packed bed reactor, corresponding to an experimental bench, are conducted, and the results are directly compared with experimental data obtained by particle image velocimetry measurements. It is found that the lattice Boltzmann solver exhibits very good agreement with experimental measurements. Then, the numerical solver is further used to analyze the effect of the number of packing layers on the flow structure and to determine the minimum bed height above which the changes in flow structure become insignificant. Finally, flow fluctuations in time are discussed. The findings of this study provide valuable insights into the behavior of the gas flow in packed bed reactors, opening the door for further investigations involving additionally chemical reactions, as found in many practical applications.
Ray tracing Particle Image Velocimetry (RT-PIV) is a novel technique for high resolution velocity measurements in challenging optical systems, such as transparent packed beds, that uses ray tracing to correct for distortions introduced by transparent geometries. The ray tracing based correction is a post processing step applied to PIV particle images before classical PIV evaluation. In this study, RT-PIV is performed in the top layer of a body centred cubic (bcc) sphere packing with gaseous flow, where optical access is generated by the use of transparent N-BK7 glass balls with a diameter of d = 40mm. RT-PIV introduces new challenges, for example a limited field of view, illumination difficulties, a very large required depth of field and high sensitivity to geometric parameters used in the ray tracing correction. These challenges are discussed in the present work as well as the validation of the ray tracing reconstruction step and the finally obtained corrected vector fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.