Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes.
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
Computational fluid dynamics (CFD) opens up multiple opportunities to investigate the hemodynamics of the human vascular system. However, due to numerous assumptions the acceptance of CFD among physicians is still limited in practice and validation through comparison is mandatory. Time-dependent quantitative phase-contrast magnetic resonance imaging PC-MRI measurements in a healthy volunteer and two intracranial aneurysms were carried out at 3 and 7 Tesla. Based on the acquired images, three-dimensional (3D) models of the aneurysms were reconstructed and used for the numerical simulations. Flow information from the MR measurements were applied as boundary conditions. The four-dimensional (4D) velocity fields obtained by CFD and MRI were qualitatively as well as quantitatively compared including cut planes and vector analyses. For all cases a high similarity of the velocity patterns was observed. Additionally, the quantitative analysis revealed a good agreement between CFD and MRI. Deviations were caused by minor differences between the reconstructed vessel models and the actual lumen. The comparisons between diastole and systole indicate that relative differences between MRI and CFD are intensified with increasing velocity. The findings of this study lead to the conclusion that CFD and MRI agree well in predicting intracranial velocities when realistic geometries and boundary conditions are provided. Due to the considerably higher temporal and spatial resolution of CFD compared to MRI, complex flow patterns can be further investigated in order to evaluate their role with respect to aneurysm formation or rupture. Nevertheless, special care is required regarding the vessel reconstruction since the geometry has a major impact on the subsequent numerical results.
Understanding the hemodynamics of blood flow in vascular pathologies such as intracranial aneurysms is essential for both their diagnosis and treatment. Computational fluid dynamics (CFD) simulations of blood flow based on patient-individual data are performed to better understand aneurysm initiation and progression and more recently, for predicting treatment success. In virtual stenting, a flow-diverting mesh tube (stent) is modeled inside the reconstructed vasculature and integrated in the simulation. We focus on steady-state simulation and the resulting complex multiparameter data. The blood flow pattern captured therein is assumed to be related to the success of stenting. It is often visualized by a dense and cluttered set of streamlines.We present a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by clustering streamlines and computing cluster representatives. While individual clustering techniques have been applied before to streamlines in 3D flow fields, we contribute a general quantitative and a domain-specific qualitative evaluation of three state-of-the-art techniques. We show that clustering based on streamline geometry as well as on domain-specific streamline attributes contributes to comparing and evaluating different virtual stenting strategies. With our work, we aim at supporting CFD engineers and interventional neuroradiologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.