Abstract. A fundamental assumption in invasion biology is that most invasive species exhibit enhanced performance in their introduced range relative to their home ranges. This idea has given rise to numerous hypotheses explaining ''invasion success'' by virtue of altered ecological and evolutionary pressures. There are surprisingly few data, however, testing the underlying assumption that the performance of introduced populations, including organism size, reproductive output, and abundance, is enhanced in their introduced compared to their native range. Here, we combined data from published studies to test this hypothesis for 26 plant and 27 animal species that are considered to be invasive. On average, individuals of these 53 species were indeed larger, more fecund, and more abundant in their introduced ranges. The overall mean, however, belied significant variability among species, as roughly half of the investigated species (N ¼ 27) performed similarly when compared to conspecific populations in their native range. Thus, although some invasive species are performing better in their new ranges, the pattern is not universal, and just as many are performing largely the same across ranges.
The factors that promote invasive behavior in introduced plant species occur across many scales of biological and ecological organization. Factors that act at relatively small scales, for example, the evolution of biological traits associated with invasiveness, scale up to shape species distributions among different climates and habitats, as well as other characteristics linked to invasion, such as attractiveness for cultivation (and by extension propagule pressure). To identify drivers of invasion it is therefore necessary to disentangle the contribution of multiple factors that are interdependent. To this end, we formulated a conceptual model describing the process of invasion of central European species into North America based on a sequence of "drivers." We then used confirmatory path analysis to test whether the conceptual model is supported by a statistical model inferred from a comprehensive database containing 466 species. The path analysis revealed that naturalization of central European plants in North America, in terms of the number of North American regions invaded, most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range. In addition to the confirmatory path analysis, we identified the effects of various biological traits on several important drivers of the conceptualized invasion process. The data supported a model that included indirect effects of biological traits on invasion via their effect on the number of native range habitats occupied and cultivation in the native range. For example, persistent seed banks and longer flowering periods are positively correlated with number of native habitats, while a stress-tolerant life strategy is negatively correlated with native range cultivation. However, the importance of the biological traits is nearly an order of magnitude less than that of the larger scale drivers and highly dependent on the invasion stage (traits were associated only with native range drivers). This suggests that future research should explicitly link biological traits to the different stages of invasion, and that a failure to consider residence time or characteristics of the native range may seriously overestimate the role of biological traits, which, in turn, may result in spurious predictions of plant invasiveness.
Summary1. Species introduced into areas outside of their native range face novel biotic and abiotic conditions, which probably impose novel selection pressures. Adaptation to these new conditions may increase the ability of introduced species to establish and spread. Like many other introduced plant populations, introduced genotypes of common mullein (Verbascum thapsus) are more successful in their introduced than in their native range, with increased growth and fecundity. These differences appear to be at least partly genetically based. The most successful introduced populations also grow in an environment that is drier and has fewer competitors than native populations. It is not known, however, whether differences between native and introduced mullein populations are related to these environmental differences between ranges. 2. We used a common garden experiment with 23 native and 27 introduced populations of common mullein to test whether common mullein in the introduced range exhibits evolutionary shifts with respect to responses to competition, drought stress and nitrogen (N) stress. We also used choice experiments to learn whether introduced mullein is more or less resistant to a generalist herbivore than native mullein. 3. Without competition, introduced genotypes grew larger than native genotypes under high resource availability (control) and N stress, but not water stress. Survival, however, was increased in native populations under competition and N stress. The introduced genotypes also had a lower root:shoot ratio than the native genotypes. With competition, introduced genotypes grew larger than native genotypes across all treatments, with that difference being significant under N stress. The introduced genotypes were also more resistant to a generalist herbivore. 4. Synthesis: Together, high biomass, strong responses to high water availability and low root:shoot ratio suggest that mullein has evolved a fast-growing, weedy phenotype in its introduced range rather than adapting to a low-water environment through increased root growth. Although fastgrowing plants can be more palatable to herbivores, in this case there does not appear to be a tradeoff between growth and defence against a generalist herbivore. Mullein appears to have evolved to be both faster growing and better defended in the introduced range.
Questions: Wildfire is a natural disturbance that shapes vegetation characteristics worldwide, while prescribed fire is increasingly used to modify vegetation composition and structure. Due to invasion of many ecosystems by exotic species, a concern of land managers is whether wildfire and prescribed fire alter plant communities in favour of exotics. We assessed the global literature describing community-level responses of native and exotic species groups to wildfire and prescribed fire and characterized the geographic and temporal scope of the data to inform research needs.Location: Predominantly the United States of America and Australia. Methods:We used meta-analysis to (1) test whether native and exotic species composition (richness or diversity) and performance (cover, density and biomass) differ in response to wildfire and prescribed fire, and (2) assess how the composition and performance of these species groups vary with time elapsed since fire and habitat types. Results:Most community-level research on how native and exotic species respond to fire has been conducted in the US and Australia, typically over short time scales, and with a focus on temperate forest and grassland ecosystems. Prescribed fire benefited native composition over short time scales (<1 yr) but, on average, had no effect on native performance, nor on exotic composition or performance. In contrast, wildfire consistently enhanced exotic composition and performance over all time scales, while having no effect on native species composition and significantly reducing native performance. Additionally, responses varied by habitat: native species groups responded positively to prescribed fire in heathlands and to a lesser extent in temperate grasslands, while responding negatively to wildfire in arid shrublands and heathlands, and to a more modest degree in tropical savannas. Exotic species groups responded positively to wildfire in arid shrublands, temperate forests and heathlands.Conclusions: This quantitative assessment of the literature revealed strong evidence for a positive response of exotics to wildfire, coupled with a striking near-absence of negative responses. The assessment additionally suggests that while prescribed fire does benefit native composition, on average, it does not appear to greatly facilitate native performance; however site-specific variation in how communities responded to fire was pronounced, underscoring the importance of local assessments in determining mechanistic drivers and management policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.