Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.
Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.
Objective. To assess the safety and efficacy of rapamycin in the treatment of diffuse systemic sclerosis (SSc; scleroderma).Methods. Eighteen patients with diffuse SSc of <5 years duration were randomized to receive rapamycin or methotrexate (MTX) in a single-blind, 48-week study. Abnormalities in clinical and laboratory parameters were compared between the 2 treatment groups. The potential efficacy of the study drugs was evaluated by comparing results of the baseline and 48-week assessments, including the modified Rodnan skin thickness score (MRSS) and the Health Assessment Questionnaire disability index.Results. The baseline characteristics of the patients were similar in both groups (n ؍ 9 in each). One patient in the rapamycin group who never received the study drug was excluded from the analysis. Three patients in each group withdrew from the study; 2 of the withdrawals were treatment-related (severe hypertriglyceridemia associated with rapamycin, and pancytopenia associated with MTX), and 4 were SSc-related. Hypertriglyceridemia was the most notable side effect associated with rapamycin, but it was generally well tolerated and treatable. The incidence and severity of other adverse drug reactions were comparable between the 2 groups. Within each group, the MRSS improved significantly from baseline. In the rapamycin group, the patient's global assessment showed a significant improvement from baseline, while forced vital capacity values declined from baseline. The disease activity scores at 48 weeks and the changes in these scores from baseline were not significantly different between the 2 groups.Conclusion. Rapamycin has a reasonable safety profile in a select group of patients with scleroderma. Larger trials are needed to assess the efficacy of rapamycin in patients with early diffuse SSc.
The inflammatory cytokine macrophage migration-inhibitory factor (MIF) promotes atherosclerosis via lesional monocyte and T-cell recruitment. B cells have emerged as important components in atherogenesis, but the interaction between MIF and B cells in atherogenesis is unknown. Here, we investigated the atherosclerotic phenotype of Mif-gene deletion in Apoe mice. Apoe Mif mice fed a Western diet exhibited strongly reduced atherosclerotic lesions in brachiocephalic artery (BC) and abdominal aorta compared with controls. This phenotype was accompanied by reduced circulating B cells. Flow cytometry revealed a B-cell developmental defect with increased premature and immature B-cell counts in bone marrow (BM) of Apoe Mif mice and diminished B-cell numbers in spleen. This finding was linked with a decreased expression of Baff-R and differentiation-driving transcription factors at the immature B-cell stage, whereas peritoneal B cells exhibited unchanged CD80 and CD86 expression but vastly decreased CD9 and elevated CD23 levels, indicating that the developmental block favors the generation of immature, egressing, and reactive B cells. Mif deficiency did not affect absolute B-cell numbers in the vessel wall but favored a relative increase of B cells in the atheroprone BC region and the appearance of periadventitial B-cell-rich clusters. Of note, Mif mice exhibited a significant increase in oxidized low-density lipoprotein (oxLDL)-specific antibodies after the injection of oxLDL, indicating that Mif deficiency is associated with higher sensitivity of B cells against natural-occurring antigens such as oxLDL. Importantly, Apoe mice adoptively transplanted with ApoeMif BM showed reduced peripheral B cells compared with Apoe BM transplantation but no atheroprotection in the BC; also, whereas there was a selective increase in atheroprotective IgM-anti-oxLDL-antibodies in global Mif deficiency, BM-specific Mif deficiency also led to elevated proatherogenic anti-oxLDL-IgG. Together, these findings reveal a novel link between MIF and B cells in atherogenesis. Protection from atherosclerosis by Mif deficiency is associated with enhanced B-cell hypersensitivity, which in global but not BM-restricted Mif deficiency favors an atheroprotective autoantibody profile in atherosclerotic mice. Targeting MIF may induce protective B-cell responses in atherosclerosis.-Schmitz, C., Noels, H., El Bounkari, O., Straussfeld, E., Megens, R. T. A., Sternkopf, M., Alampour-Rajabi, S., Krammer, C., Tilstam, P. V., Gerdes, N., Bürger, C., Kapurniotu, A., Bucala, R., Jankowski, J., Weber, C., Bernhagen, J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis.
Approximately 15 million children under age 6 are in childcare settings, offering childcare providers an opportunity to influence children’s dietary intake. Childcare settings vary in organizational structure – childcare centers (CCCs) vs. family childcare homes (FCCHs) – and in geographical location – urban vs. rural. Research on the nutrition-related best practices across these childcare settings is scarce. The objective of this study is to compare nutrition-related best practices of CCCs and FCCHs that participate in the Child and Adult Care Food Program (CACFP) in rural and urban Nebraska. Nebraska providers (urban n = 591; rural n = 579) reported implementation level, implementation difficulty and barriers to implementing evidence-informed food served and mealtime practices. Chi-square tests comparing CCCs and FCCHs in urban Nebraska and CCCs and FCCHs in rural Nebraska showed sub-optimal implementation for some practices across all groups, including limiting fried meats and high sugar/ high fat foods, using healthier foods or non-food treats for celebrations and serving meals family style. Significant differences (p < .05) between CCCs and FCCHs also emerged, especially with regard to perceived barriers to implementing best practices. For example, CCCs reported not having enough money to cover the cost of meals for providers, lack of control over foods served and storage problems, whereas FCCHs reported lack of time to prepare healthier foods and sit with children during mealtimes. Findings suggest that policy and public health interventions may need to be targeted to address the unique challenges of implementing evidence-informed practices within different organizational structures and geographic locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.