Rhoderick, GC, et al. 2019. Stability of gaseous volatile organic compounds contained in gas cylinders with different internal wall treatments. Elem Sci Anth, 7: 28.Measurements of volatile organic compounds (VOCs) have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas-phase compounds in atmospheric chemistry it is essential to have good calibration standards. A necessity and precursor to accurate VOC gas standards are the gas cylinders and the internal wall treatments that aid in maintaining the stability of the mixtures over long periods of time, measured in years. This paper will discuss the stability of VOC gas mixtures in different types of gas cylinders and internal wall treatments. Stability data will be given for 85 VOCs studied in gas mixtures by National Metrology Institutes and other agency laboratories. This evaluation of cylinder treatment materials is the outcome of an activity of the VOC Expert Group within the framework of the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) program.
Exhaled breath is a non-invasive, information-rich matrix with the potential to diagnose or monitor disease, including infectious disease. Despite significant effort dedicated to biomarker identification in case control studies, very few breath tests are established in practice. In this topical review, we identify how gas standards support breath analysis today and what is needed to support further expansion and translation to practice. We examine forensic and clinical breath tests and discuss how confidence has been built through unambiguous biomarker identification and quantitation supported by gas calibration standards. Based on this discussion, we identify a need for multicomponent gas standards with part-per-trillion to part-per-million concentrations. We highlight National Institute of Standards and Technology (NIST) gas standards developed for atmospheric measurements that are also relevant to breath analysis and describe investigations of long-term stability, chemical reactions, and interactions with gas cylinder wall treatments. An overview of emerging online instruments and their need for gas standards is also presented. This review concludes with a discussion of our ongoing research to examine the feasibility of producing multicomponent gas standards at breath-relevant concentrations. Such standards could be used to investigate interference from ubiquitous endogenous compounds and as a starting point for standards tailored to specific breath tests.
A model for errors-in-variables regression is described that can be used to overcome the challenge posed by mutually inconsistent calibration data. The model and its implementation are illustrated in applications to the measurement of the amount fraction of oxygen in nitrogen from key comparison CCQM-K53, and of carbon isotope delta values in steroids from human urine. These two examples clearly demonstrate that inconsistencies in measurement results can be addressed similarly to how laboratory effects are often invoked to deal with mutually inconsistent results from interlaboratory studies involving scalar measurands. Bayesian versions of errors-in-variables regression, fitted via Markov Chain Monte Carlo sampling, are employed, which yield estimates of the key comparison reference function in one example, and of the analysis function in the other. The fitting procedures also characterize the uncertainty associated with these functions, while quantifying and propagating the “excess” dispersion that was unrecognized in the uncertainty budgets for the individual measurements, and that therefore is missing from the reported uncertainties. We regard this “excess” dispersion as an expression of dark uncertainty, which we take into account in the context of calibrations that involve regression models. In one variant of the model the estimate of dark uncertainty is the same for all the participants in the comparison, while in another variant different amounts of dark uncertainty are assigned to different participants. We compare these models with the conventional errors-in-variables model underlying the procedure that ISO 6143 recommends for building analysis functions. Applications of this procedure are often preceded by the selection of a subset of the measurement results deemed to be mutually consistent, while the more discrepant ones are set aside. This new model is more inclusive than the conventional model, in that it easily accommodates measurement results that are mutually inconsistent. It produces results that take into account contributions from all apparent sources of uncertainty, regardless of whether these sources are already understood and their contributions have been included in the reported uncertainties, or still require investigation after they will have been detected and quantified.
There are many gas phase compounds present in the atmosphere that affect and influence the earth's climate. These compounds absorb and emit radiation, a process which is the fundamental cause of the greenhouse effect. The major greenhouse gases in the earth's atmosphere are carbon dioxide, methane, nitrous oxide, and ozone. Some halocarbons are also strong greenhouse gases and are linked to stratospheric ozone depletion. Hydrocarbons and monoterpenes are precursors and contributors to atmospheric photochemical processes, which lead to the formation of particulates and secondary photo-oxidants such as ozone, leading to photochemical smog. Reactive gases such as nitric oxide and sulfur dioxide are also compounds found in the atmosphere and generally lead to the formation of other oxides. These compounds can be oxidized in the air to acidic and corrosive gases and contribute to photochemical smog. Measurements of these compounds in the atmosphere have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas phase compounds in atmospheric chemistry, it is essential to have good calibration standards. The National Institute of Standards and Technology has been developing standards of many of these compounds for over 40 years. This paper discusses the development of these standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.