The exponential increase in available neural data has combined with the exponential growth in computing (“Moore's law”) to create new opportunities to understand neural systems at large scale and high detail. The ability to produce large and sophisticated simulations has introduced unique challenges to neuroscientists. Computational models in neuroscience are increasingly broad efforts, often involving the collaboration of experts in different domains. Furthermore, the size and detail of models have grown to levels for which understanding the implications of variability and assumptions is no longer trivial. Here, we introduce the model design platform N2A which aims to facilitate the design and validation of biologically realistic models. N2A uses a hierarchical representation of neural information to enable the integration of models from different users. N2A streamlines computational validation of a model by natively implementing standard tools in sensitivity analysis and uncertainty quantification. The part-relationship representation allows both network-level analysis and dynamical simulations. We will demonstrate how N2A can be used in a range of examples, including a simple Hodgkin-Huxley cable model, basic parameter sensitivity of an 80/20 network, and the expression of the structural plasticity of a growing dendrite and stem cell proliferation and differentiation.
Infection with Mycobacterium tuberculosis (Mtb) is characterized by localized, roughly spherical lesions within which the pathogen interacts with host cells. Containment of the infection or progression of disease depends on the behavior of individual cells, which, in turn, depends on the local molecular environment and on contact with neighboring cells. Modeling can help us understand the nonlinear interactions that drive the overall dynamics in this system. Early events in infection are particularly important, as are spatial effects and inherently stochastic processes. We describe a model of early Mycobacterium infection using the CyCells simulator, which was designed to capture these effects. We relate CyCells simulations of the model to several experimental observations of individual components of the response to Mtb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.