We recently identi®ed DPC4/Smad4 as a candidate tumor suppressor gene mutated or lost in one half of pancreatic carcinomas and in a subset of colon and biliary tract carcinomas. DPC4 plays a key role in signal transduction of the TGF-b superfamily of molecules and inactivation of TGF-b mediated growth inhibition is supposed to be the driving force for DPC4 inactivation in human tumors. However, DPC4 mediated tumor suppression by reconstitution of defective cells has not yet been reported. Here we show suppression of tumorigenicity in nude mice by stable reexpression of DPC4 in SW480 colon carcinoma cells. In vitro growth of DPC4-transfected cells was not aected and resistance towards TGF-b mediated growth inhibition was retained. Instead, cells exhibited morphological alterations and adhesion and spreading were accelerated. These phenotypic changes were associated with reduced expression levels of the endogenous urokinase-type plasminogen activator (uPA) and plasminogen-activator-inhibitor-1 (PAI-1) genes, the products of which are implicated in the control of cell adhesion and invasion. In patients, high expression levels of uPA and PAI-1 correlate with poor prognosis. Thus, reduced expression of uPA and PAI-1 is consistent with suppression of tumorigenicity in DPC4 reconstituted cells. These results demonstrate DPC4's tumor suppressive function and suggest a potential role for DPC4 as a modulator of cell adhesion and invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.