In field studies of tick ecology, observed patterns may be biased by sampling methods. Results can vary by species, life stage, and habitat, and understanding these biases will improve comparisons of data across studies as well as assessment of human disease risk. A direct comparison of flagging versus dragging was conducted in southeastern Virginia. Transects were surveyed over a 6-wk period to identify differences in species and life stage collected, as well as differences between corduroy and denim material and inspection method for drags. Flagging collected more Ixodes affinis Neumann (Acari: Ixodidae) adults and Amblyomma americanum L. (Acari: Ixodidae) adults than dragging. Ground inspection was more efficient than tree inspection for collection of I. affinis adults, with no significant difference in inspection method for any other species or life stage. Corduroy was found to be more effective than denim in collecting nymphal A. americanum, although this may be an artifact of three large samples for corduroy collection of these ticks. There was no significant difference in Ixodes scapularis Say (Acari: Ixodidae) collection in any comparison. Dragging, tree inspection, and denim were not found to be more efficient in any scenario. This is the first comparison of flagging and dragging conducted in the southeastern United States. The community composition of ticks in this region greatly differs from regions where studies of these commonly used sampling techniques have been conducted. As the distributions of ticks continue to change over time, it will be important to evaluate best practices annually.
Increasingly, geographic approaches to assessing the risk of tick‐borne diseases are being used to inform public health decision‐making and surveillance efforts. The distributions of key tick species of medical importance are often modeled as a function of environmental factors, using niche modeling approaches to capture habitat suitability. However, this is often disconnected from the potential distribution of key host species, which may play an important role in the actual transmission cycle and risk potential in expanding tick‐borne disease risk. Using species distribution modeling, we explore the potential geographic range of Oryzomys palustris, the marsh rice rat, which has been implicated as a potential reservoir host of Rickettsia parkeri, a pathogen transmitted by the Gulf Coast tick (Amblyomma maculatum) in the southeastern United States. Due to recent taxonomic reclassification of O. palustris subspecies, we reclassified geolocated collections records into the newer clade definitions. We modeled the distribution of the two updated clades in the region, establishing for the first time, range maps and distributions of these two clades. The predicted distribution of both clades indicates a largely Gulf and southeastern coastal distribution. Estimated suitable habitat for O. palustris extends into the southern portion of the Mid‐Atlantic region, with a discontinuous, limited area of suitability in coastal California. Broader distribution predictions suggest potential incursions along the Mississippi River. We found considerable overlap of predicted O. palustris ranges with the distribution of A. maculatum, indicating the potential need for extended surveillance efforts in those overlapping areas and attention to the role of hosts in transmission cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.