The HIV/AIDS pandemic remains an enormous global health concern. Despite effective prevention options, 2.6 million new infections occur annually, with women in developing countries accounting for more than half of these infections. New prevention strategies that can be used by women are urgently needed. Topical microbicides specific for HIV-1 represent a promising prevention strategy. Conceptually, using harmless bacteria to display peptides or proteins capable of blocking entry provides an inexpensive approach to microbicide development. To avoid the potential pitfalls of engineering commensal bacteria, our strategy is to genetically display infection inhibitors on a non-native bacterium and rely on topical application of stabilized bacteria before potential virus exposure. Due to the high density cell-surface display capabilities and the inherent low toxicity of the bacterium, the S-layer mediated protein display capabilities of the non-pathogenic bacterium Caulobacter crescentus has been exploited for this approach. We have demonstrated that C. crescentus displaying MIP1α or CD4 interfered with the virus entry pathway and provided significant protection from HIV-1 pseudovirus representing clade B in a standard single cycle infection assay. Here we have expanded our C. crescentus based microbicide approach with additional and diverse classes of natural and synthetic inhibitors of the HIV-1 entry pathway. All display constructs provided variable but significant protection from HIV-1 infection; some with protection as high as 70%. Further, we describe protection from infection with additional viral clades. These findings indicate the significant potential for engineering C. crescentus to be an effective and readily adaptable HIV-1 microbicide platform.
Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement.
Calpains are ubiquitous intracellular, calcium-sensitive, neutral cysteine proteases 1 . Calpains play crucial roles in many physiological processes, including signaling, cytoskeletal remodeling, regulation of gene expression, apoptosis and cell cycle progression 1 . Calpains have been implicated in many pathologies including muscular dystrophies, cancer, diabetes, Alzheimer's disease and multiple sclerosis 1 . Calpain regulation is complex and incompletely understood. mRNA and protein levels correlate poorly with activity, limiting the use of gene or protein expression techniques to measure calpain activity. This video protocol details a flow cytometric assay developed in our laboratory for measuring calpain activity in fixed and living cells. This method uses the fluorescent substrate BOC-LM-CMAC, which is cleaved specifically by calpain, to measure calpain activity. 2 In this video, calpain activity in fixed and living murine 32Dkit leukemia cells, alone or as part of a splenocyte population is measured using an LSRII (BD Bioscience). 32Dkit cells are shown to have elevated activity compared to normal splenocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.