The swelling and co-nonsolvency behaviors in pure H 2 O and in a mixed H 2 O/CH 3 OH vapor atmosphere of two different polar, water-soluble polymers in thin film geometry are studied in situ. Films of a zwitterionic poly(sulfobetaine), namely, poly [3-((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1sulfonate] (PSPE), and a polar nonionic polymer, namely, poly(Nisopropylmethacrylamide) (PNIPMAM), are investigated in real time by spectral reflectance (SR) measurements and Fourier transform infrared (FTIR) spectroscopy. Whereas PSPE is insoluble in methanol, PNIPMAM is soluble but exhibits cononsolvency behavior in water/methanol mixtures. First, the swelling of PSPE and PNIPMAM thin films in H 2 O vapor is followed. Subsequently, CH 3 OH is added to the vapor atmosphere, and its contracting effect on the water-swollen films is monitored, revealing a co-nonsolvency-type behavior for PNIPMAM and PSPE. SR measurements indicate that PSPE and PNIPMAM behave significantly different during the H 2 O swelling and subsequent exposure to CH 3 OH, not only with respect to the amounts of absorbed water and CH 3 OH, but also to the cosolvent-induced contraction mechanisms. While PSPE thin films exhibit an abrupt one-step contraction, the contraction of PNIPMAM thin films occurs in two steps. FTIR studies corroborate these findings on a molecular scale and reveal the role of the specific functional groups, both during the swelling and the cosolvent-induced switching of the solvation state.
The swelling and solvation of 100−200 nm thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylacrylamide) (PNIPAM) block are investigated in mixed water/methanol vapors. The processes are followed in real time using spectral reflectance (SR), time-offlight neutron reflectometry (ToF-NR), and Fourier transform infrared (FT-IR) spectroscopy, applying two neutron scattering contrast variation sequences. After hydration in pure water vapor, the vapor composition (relative to a flow rate of 1 L/ min ≙ 100%) is changed to 70% water (D 2 O/H 2 O) and 30% methanol (CH 3 OH/ CD 3 OH). Upon the mixed vapor stimulus, a two-step response is found, in which an initially enhanced swelling of the films is followed by a contraction. Differences in the solvent exchange kinetics found in ToF-NR experiments coincide with characteristic changes in the FT-IR spectra. While the initially enhanced swelling of the films is driven by the absorption of methanol, the film contraction is related to the release of both solvents, with almost no further change in solvent composition. In analogy to the coil-to-globule transition encountered in the polymer solution, these film response characteristics are attributed to the cononsolvency behavior of PNIPAM in water/methanol mixtures.
The swelling of thin diblock copolymer (DBC) films is investigated in situ at 22 °C in pure water vapor as well as in mixed water/methanol vapor. The DBC consists of a zwitterionic poly(sulfobetaine) block, poly[3–((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1-sulfonate] (PSPE), and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block. The swelling in water vapor (either H2O or D2O) and the thin-film response to methanol vapor exchange (i.e., a part of the H2O vapor is exchanged by CD3OH vapor and a part of the D2O vapor is exchanged by CH3OH vapor) are followed with simultaneous time-of-flight neutron reflectometry (ToF-NR) and spectral reflectance (SR) measurements. In situ Fourier transform infrared (FTIR) spectroscopy complements these data. Exposure to H2O vapor leads to a slightly higher degree of swelling and amount of absorbed H2O compared to D2O. Upon methanol exchange, the PSPE-b-PNIPMAM thin film undergoes two contractions, which are assigned to the specific responses of the individual polymer blocks of the DBC. Due to its isotope sensitivity, FTIR confirms these two separate contraction processes of the blocks on a molecular level and reveals the role of each polymer block during swelling in water vapor and upon the methanol exchange. Thus, four distinct film regimes with different thicknesses dependencies on the vapor composition can be established, thereby enabling a quarternary nanoswitch.
The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(Nisopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50−100 nm thickness are first swollen in saturated water vapor (H 2 O or D 2 O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H 2 O or D 2 O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H 2 O is stronger than for D 2 O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H 2 O/acetone-d6 and D 2 O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, whereas the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.
The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(N-(3′methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature. The swelling kinetics in D 2 O vapor at 15 °C and the phase transition kinetics upon heating the swollen film to 60 °C and cooling back to 15 °C are followed with simultaneous time-of-flight neutron reflectometry and spectral reflectance measurements. These are complemented by Fourier transform infrared spectroscopy. The collapse temperature of PNIPMAM and the swelling temperature of PSBP are found at lower temperatures than in aqueous solution, which is attributed to the high polymer concentration in the thin-film geometry. Upon inclusion of sub-stoichiometric amounts (relative to the monomer units) of NaBr in the films, the water incorporation is significantly increased. This increase is mainly attributed to a salting-in effect on the zwitterionic PSBP block. Whereas the addition of NaBr notably shifts the swelling temperature of PSBP to lower temperatures, the collapse temperature of PNIPMAM remains unaffected by the presence of salt in the films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.