The swelling and solvation of 100−200 nm thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylacrylamide) (PNIPAM) block are investigated in mixed water/methanol vapors. The processes are followed in real time using spectral reflectance (SR), time-offlight neutron reflectometry (ToF-NR), and Fourier transform infrared (FT-IR) spectroscopy, applying two neutron scattering contrast variation sequences. After hydration in pure water vapor, the vapor composition (relative to a flow rate of 1 L/ min ≙ 100%) is changed to 70% water (D 2 O/H 2 O) and 30% methanol (CH 3 OH/ CD 3 OH). Upon the mixed vapor stimulus, a two-step response is found, in which an initially enhanced swelling of the films is followed by a contraction. Differences in the solvent exchange kinetics found in ToF-NR experiments coincide with characteristic changes in the FT-IR spectra. While the initially enhanced swelling of the films is driven by the absorption of methanol, the film contraction is related to the release of both solvents, with almost no further change in solvent composition. In analogy to the coil-to-globule transition encountered in the polymer solution, these film response characteristics are attributed to the cononsolvency behavior of PNIPAM in water/methanol mixtures.
Slot‐die coating is a powerful method for upscaling the production of organic solar cells (OSCs) with low energy consumption print processes at ambient conditions. Herein, chlorobenzene (CB) and chloroform (CF) are compared as host solvents for printing films of the neat novel fused‐ring unit based wide‐bandgap donor polymer (PDTBT2T‐FTBDT), the small molecule nonfullerene acceptor based on a fused ring with a benzothiadiazole core (BTP‐4F) as well as the respective PDTBT2T‐FTBDT:BTP‐4F blend films at room temperature in air. Using CF printing of the PDTBT2T‐FTBDT:BTP‐4F active layer, OSCs with a high power conversion efficiency of up to 13.2% are reached in ambient conditions. In comparison to CB printed blend films, the active layer printed out of CF has a superior morphology, a smoother film surface and a more pronounced face‐on orientation of the crystallites, which altogether result in an enhanced exciton dissociation, a superior charge transport, and suppressed nonradiative charge carrier recombination. Based on in situ studies of the slot‐die coating process of PDTBT2T‐FTBDT, BTP‐4F, and PDTBT2T‐FTBDT:BTP‐4F films, the details of the film formation kinetics are clarified, which cause the superior behavior for CF compared to CB printing due to balancing the aggregation and crystallization of donor and acceptor.
The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied via spectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(Nisopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50−100 nm thickness are first swollen in saturated water vapor (H 2 O or D 2 O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H 2 O or D 2 O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H 2 O is stronger than for D 2 O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H 2 O/acetone-d6 and D 2 O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, whereas the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior.
To systematically add functionality to nanoscale polymer switches, an understanding of their responsive behavior is crucial. Herein, solvent vapor stimuli are applied to thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N‐isopropylmethacrylamide) (PNIPMAM) block for realizing ternary nanoswitches. Three significantly distinct film states are successfully implemented by the combination of amphiphilicity and co‐nonsolvency effect. The exposure of the thin films to nitrogen, pure water vapor, and mixed water/acetone (90 vol%/10 vol%) vapor switches the films from a dried to a hydrated (solvated and swollen) and a water/acetone‐exchanged (solvated and contracted) equilibrium state. These three states have distinctly different film thicknesses and solvent contents, which act as switch positions “off,” “on,” and “standby.” For understanding the switching process, time‐of‐flight neutron reflectometry (ToF‐NR) and spectral reflectance (SR) studies of the swelling and dehydration process are complemented by information on the local solvation of functional groups probed with Fourier‐transform infrared (FTIR) spectroscopy. An accelerated responsive behavior beyond a minimum hydration/solvation level is attributed to the fast build‐up and depletion of the hydration shell of PNIPMAM, caused by its hydrophobic moieties promoting a cooperative hydration character.
Poly(N-isopropylmethacrylamide) (PNIPMAM) is a stimuli-responsive polymer, which in thin film geometry exhibits a volume-phase transition upon temperature increase in water vapor. The swelling behavior of PNIPMAM thin films containing magnesium salts in water vapor is investigated in view of their potential application as nanodevices. Both the extent and the kinetics of the swelling ratio as well as the water content are probed with in situ time-of-flight neutron reflectometry. Additionally, in situ Fourier-transform infrared (FTIR) spectroscopy provides information about the local solvation of the specific functional groups, while two-dimensional FTIR correlation analysis further elucidates the temporal sequence of solvation events. The addition of Mg(ClO4)2 or Mg(NO3)2 enhances the sensitivity of the polymer and therefore the responsiveness of switches and sensors based on PNIPMAM thin films. It is found that Mg(NO3)2 leads to a higher relative water uptake and therefore achieves the highest thickness gain in the swollen state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.