Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.
We propose a simple method to learn linear causal cyclic models in the presence of latent variables. The method relies on equilibrium data of the model recorded under a specific kind of interventions ("shift interventions"). The location and strength of these interventions do not have to be known and can be estimated from the data. Our method, called BACKSHIFT, only uses second moments of the data and performs simple joint matrix diagonalization, applied to differences between covariance matrices. We give a sufficient and necessary condition for identifiability of the system, which is fulfilled almost surely under some quite general assumptions if and only if there are at least three distinct experimental settings, one of which can be pure observational data. We demonstrate the performance on some simulated data and applications in flow cytometry and financial time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.