The steady-state photoluminescence (PL) properties of cadmium selenide quantum dots (QDs) with a zinc sulfide overlayer [(CdSe)ZnS] can be strongly dependent on temperature in the range from 100 to 315 K. The PL intensity from 50 to 55 Å (CdSe)ZnS QDs in poly(lauryl methacrylate) matrices increases by a factor of ∼5 when the temperature is decreased from 315 to 100 K, and the peak of the emission band is blueshifted by 20 nm over the same range. The change in PL intensity is appreciable, linear, and reversible (−1.3% per °C) for temperatures close to ambient conditions. These properties of (CdSe)ZnS dots are retained in a variety of matrices including polymer and sol–gel films, and they are independent of excitation wavelength above the band gap. The significant temperature dependence of the luminescence combined with its insensitivity to oxygen quenching establishes (CdSe)ZnS dots as optical temperature indicators for temperature-sensitive coatings.
The electronic, vibrational, and excited-state properties of hexanuclear rhenium(III) chalcogenide clusters based on the [Re(6)(mu(3)-Q)(8)](2+) (Q = S, Se) core have been investigated by spectroscopic and theoretical methods. Ultraviolet or visible excitation of [Re(6)Q(8)](2+) clusters produces luminescence with ranges in maxima of 12 500-15 100 cm(-)(1), emission quantum yields of 1-24%, and emission lifetimes of 2.6-22.4 microseconds. Nonradiative decay rate constants and the luminescence maxima follow the trend predicted by the energy gap law (EGL). Examination of 24 clusters in solution and 14 in the solid phase establish that exocluster ligands engender the observed EGL behavior; clusters with oxygen- or nitrogen-based apical ligands achieve maximal quantum yields and the longest lifetimes. The excited-state decay mechanism was investigated by applying nonradiative decay models to temperature-dependent emission experiments. Solid-state Raman spectra were recorded to identify vibrational contributions to excited-state deactivation; spectral assignments were enabled by normal coordinate analysis afforded from Hartree-Fock and DFT calculations. Excited-state decay is interpreted with a model where normal modes largely centered on the [Re(6)Q(8)](2+) core induce nonradiative relaxation. Hartree-Fock and DFT calculations of the electronic structure of the hexarhenium family of compounds support such a model. These experimental and theoretical studies of [Re(6)Q(8)](2+) luminescence provide a framework for elaborating a variety of luminescence-based applications of the largest series of isoelectronic clusters yet discovered.
Clusters based on the cubic, hexanuclear rhenium(III) core [Re6(μ3-Q)8]2+ (Q = S, Se) emit red phosphorescence with microsecond-scale lifetimes. Emission quantum yields of 16 clusters range from 1% to 23%; those having O-bound terminal ligands feature the highest yields and the longest liftimes. Certain clusters are photolabile, with medium-sensitive emissive properties. When photodecomplexation is suppressed, all clusters herein obey the energy gap law, indicating excitation confined to the [Re6Q8]2+ core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.