The electronic, vibrational, and excited-state properties of hexanuclear rhenium(III) chalcogenide clusters based on the [Re(6)(mu(3)-Q)(8)](2+) (Q = S, Se) core have been investigated by spectroscopic and theoretical methods. Ultraviolet or visible excitation of [Re(6)Q(8)](2+) clusters produces luminescence with ranges in maxima of 12 500-15 100 cm(-)(1), emission quantum yields of 1-24%, and emission lifetimes of 2.6-22.4 microseconds. Nonradiative decay rate constants and the luminescence maxima follow the trend predicted by the energy gap law (EGL). Examination of 24 clusters in solution and 14 in the solid phase establish that exocluster ligands engender the observed EGL behavior; clusters with oxygen- or nitrogen-based apical ligands achieve maximal quantum yields and the longest lifetimes. The excited-state decay mechanism was investigated by applying nonradiative decay models to temperature-dependent emission experiments. Solid-state Raman spectra were recorded to identify vibrational contributions to excited-state deactivation; spectral assignments were enabled by normal coordinate analysis afforded from Hartree-Fock and DFT calculations. Excited-state decay is interpreted with a model where normal modes largely centered on the [Re(6)Q(8)](2+) core induce nonradiative relaxation. Hartree-Fock and DFT calculations of the electronic structure of the hexarhenium family of compounds support such a model. These experimental and theoretical studies of [Re(6)Q(8)](2+) luminescence provide a framework for elaborating a variety of luminescence-based applications of the largest series of isoelectronic clusters yet discovered.
Bis-cyclometalated iridium complexes with enhanced phosphorescence quantum yields in the red region of the visible spectrum are described. Here, we demonstrate that incorporating strongly π-donating, nitrogen-containing β-ketoiminate (acNac), β-diketiminate (NacNac), and N, N'-diisopropylbenzamidinate (dipba) ancillary ligands can demonstrably perturb the excited-state kinetics, leading to enhanced photoluminescence quantum yields (Φ) for red-emitting compounds. A comprehensive study of the quantum yields and lifetimes for these complexes reveals that for the compounds with the highest quantum yields, the radiative rate constant ( k) is significantly higher than that of related complexes, and contributes substantially to the increase in Φ. Experimental and computational evidence is consistent with the notion that an increase in spin-orbit coupling, caused by an enhancement of the metal-to-ligand charge transfer (MLCT) character of the excited state via destabilization of the HOMO, is mainly responsible for the faster radiative rates. One of the compounds was shown to be effective as the emissive dopant in an organic light-emitting diode device.
Two-coordinate copper(I) acetate and copper(I) methyl complexes, bearing an N-heterocyclic carbene (NHC) supporting ligand, have been synthesized and structurally characterized, and the stability of the monodentate acetate has been examined by DFT calculations. The methyl complex readily inserts carbon dioxide at ambient temperature and pressure, regenerating the acetate in near-quantitative yield.
Carbon-gold bond formation propels a growing number of homogeneous catalyses, but the C-Au bond formation itself is comparatively underinvestigated. Reported here are C-Au bond-forming reactions that result from [3 + 2] cycloaddition of (triphenylphosphine)gold(I) azide to terminal alkynes. The reaction proceeds with the preformed azide complex or, in situ, by reaction of the corresponding gold(I) alkynyl with trimethylsilyl azide in the presence of protic solvents. This metal-mediated cycloaddition is analogous to the Huisgen dipolar addition of azides and alkynes and provides access to new classes of gold-bearing compounds and materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.